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Abstract

Western African Sahel faced severe droughts in the 1980s, affecting agricultural
production and food security. In recent decades, farmers have faced uncertainty
in the timing and amount of rainy seasons and are confronted with erratic rainfall
with high interannual variations. Can the experience of past dry events reduce the
vulnerability of households to short-term rainfall shocks? In this paper, I match three
waves of panel household surveys focusing on agriculture in Nigeria (GHS, from 2010-
2016) and high temporal resolution precipitation data set from the Climate Hazard
Center (CHIRPS). I show evidence of the extreme importance of the long-dry period
of the 1980s and identify more recent droughts in 2013/2015, which are in line with
a change in the characteristics of the rainfall trends. Through a two-way-fixed effect
strategy, I exploit the spatial variation of the exposition to the 2015 drought. First,
I look at the short-term effects of being hit by a drought on agricultural production
and food security indicators. I show that being hit by a drought decreases yields by
14%, and decreases the food diversity of households by around 1%. Second, I look at
the impacts’ heterogeneity according to the plot’s experience, using the timing of the
year of acquisition of the plot. I compare short-term droughts’ effects on households
that acquired their first plot before the 1980s dry period to those that acquired it
after. Results suggest that acquiring the land before 1985 attenuates the harmful
effects of a climate shock, as these particular households have only a 3% reduction
in their yields due to the 2015 drought. This is especially the case when households
were severely hit in the 1980s. This result might suggest that having a long-lasting
experience under extreme dry events on cultivated land reduces vulnerability to
rainfall variability.
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1 Introduction

Reducing the sensitivity of agricultural production to climate shocks is a key factor in
tackling food insecurity. In particular for Sub-Saharan countries, where most of the pop-
ulation is rural, involved in predominant rainfed agriculture, soils suffer from aridity and
are vulnerable to droughts [Benson and Clay, 1998] and smallholder farmers face mal-
nutrition and limited resources [Lobell et al., 2008]. Historical higher temperature and
rainfall fluctuations have reduced economic output in Africa, and especially agricultural
productivity 1 and farm income, increasing the gap with developed countries [Barrios
et al., 2008; Dell et al., 2012; Nordhaus, 2006] 2.

If rainfall strongly declined during the prolonged dry period of the 1970s-1980s in the
Sahel, climatologists have observed a partial recovery of seasonal precipitation in most
recent decades [Nicholson, 2005], leading to the re-greening of the Sahel [Brandt et al.,
2015; Fensholt et al., 2012]. Satellite-based analysis of vegetation greenness in semi-
arid areas has found an increase in the vegetation index, the NDVI, used as a proxy for
vegetation production [Fensholt et al., 2012]. However, the NDVI signal combines leaf
biomass of woody species and herb biomass, and Brandt et al. [2015] have shown that
the greening phenomenon was born by tree species, which are more resilient to droughts
than herbs. On the contrary, the dynamics of biodiversity was found to decline over the
study period. There is also a debate about the return of normal precipitations [Biasutti,
2019]. Since the 1990s, Sahelian farmers have reported changes in rainfall characteristics,
noticing fluctuations in the timing, amount, and pattern of the rains (decreases during
shorter rainy seasons) [Tambo, 2013]. Analyses of rainfall trends from gauges find that
the recovery results from increases in daily rainfall intensity rather than in frequency,
rains being concentrated in the late rainy season and away from the west coast [Giannini
et al., 2013; Panthou et al., 2018]. Unlike temperature trends, predictive models for Sahel
rainfall changes due to climate change and its impact on yields are also uncertain but
point towards more variation in precipitations [Biasutti et al., 2008]. Schlenker and Lo-
bell [2010] predict serious future damages of temperature increase for maize production in
Sub-Saharan Africa. Sultan et al. [2013] have realized several projections to quantify the
yield responses of varieties of mil and sorghum over Africa to a pair of temperature and

1case of Millet in Niger
2Under the assumption of climate-economy equilibrium, [Nordhaus, 2006] finds in a global cross-

section analysis that 20 percent of the income differences in Africa relative to high-income regions can
be explained by geographic variables, including temperature and precipitation, but also elevation, soil
quality. Looking at annual changes in historical temperature, Dell et al. [2012] show that being 1°C
warmer reduces per capita income by 1.4 %, but only in poor countries.
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rainfall anomalies. They show that future responses and patterns will be very different
from historical ones, as past mean yields were mainly vulnerable to rainfall anomalies,
while higher temperatures will shape future ones.

Such uncertainty about seasonal precipitations is an important challenge for agricul-
ture. Smallholder farmers in developing countries, who lack credit [Cole et al., 2013;
Banerjee et al., 2015], and lack information about suitable measures and knowledge of
climate change, might be able to mitigate negative impacts using adaptive strategies.
However, farmers’ perceptions of climate change and variability are hard to assess di-
rectly or even proxy. Besides, understanding the long-run effects of climate on agricul-
tural production and other socio-economic outcomes requires distinguishing the historical
multiple responses and to link inter-annual and longer-term patterns of precipitations.
This project’s first goal is to contribute to the literature by linking the recent rainfall
variability to the longer-term evolution of the rains. Particular attention is devoted to
the analysis of rainfall variability and its relation to changes in precipitation trends over
the country. Refuting the theory of the recovery of rainfall over Nigeria, this analysis
identifies important droughts over the more recent decades, from 2013-2015, which are
linked to less frequent and more intense rains in the long-rain in the Gulf-Guinean part
of the country since the dramatic dry year period of the 1980s.

I match socio-economic data from a three-round panel survey, the Nigerian Gen-
eral Household Survey Panel (GHS) to high-resolution historical precipitation data, the
CHIRPS product. This paper’s research question is to assess the effects of short-term
droughts on agricultural outputs and food security. I use a two-way fixed effect strategy
over a three years survey panel in 2010, 2012 and 2015. I exploit the spatial variation
of droughts occurring before/during the last wave. Second, the main goal is to under-
stand the heterogeneity of the impacts using retrospective questions. Ideally, I aim to test
whether past exposure to the severe dry period of the 1980s explains the capacity to adapt
to recent rainfall shocks and to reduce the negative impacts on yields and food security.
For the moment, I only test a reduced form and run a heterogeneity analysis according
to the timing of acquisition of the first plot of the household. I compare the impact of
recent rainfall shortages for households that acquired their first plot before the 1980s dry
year to those who acquired it later, the hypothesis being that having experience of your
own plot under drastic dry conditions might increase your knowledge of climate change,
good practices and how to adapt, and thus reduce the effect of recent droughts. The main
research question is: can the experience of past dry events reduce the vulnerability of
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households to rainfall shocks?

The first main result of the paper shows that facing a dry year in the recent decade
decreases yields by 14%, and implies a reduction in the diversity food score of households,
losing 0.14 food group over 12 (1.2% reduction). The heterogeneity analysis shows that
the results are mainly driven by households who acquired their land after the 1980s dry
period, especially those that were severely hit by the 1980s droughts.
The heterogeneity analysis suggests that being hit by a drought decreases the yields on
average by 19% for households that acquired their first land after 1985, in comparison
to those who acquired it previously, for which the effect is attenuated by 16%, facing a
3% decrease. This result suggests that working on the same land that was hit by the
intense droughts from 1980s reduces the vulnerability to the 2015 drought. As the year
of land acquisition is an endogenous variable, this is only descriptive evidence, and these
results can not be interpreted in a causal way. This is a suggestion of the role that plays
experience, knowledge, and past exposure to intense dry years. Based on a reduced form,
I can not directly conclude whether this means that the land acquisition before past ex-
treme events results in better adaptive strategies and a better perception or knowledge.
However, this result suggests that having a long-lasting experience of the cultivated land
reduces vulnerability to rainfall shocks, and especially when having experience of the land
under past extreme dry conditions.

The remainder of the paper is organized as follows. Section 2 presents the context in
light of the literature. Section 3 describes the data, the context, as well and the statistical
analysis of long-trends of climate change and how they can be linked to recent rainfall
variability. Section 4 details the main empirical strategy. Section 5 introduces the results
and Section 6 the heterogeneity analysis, while Section 7 proposes a list of robustness
checks. Section 8 concludes.
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2 Literature review

Assessing the historical and future effects of climate change and variability on agricultural
production requires understanding how farmers adapt or, if not possible, account for it.
This is the main limitation of agronomic studies, which construct crop models based on
plant physiology to predict how climate change will directly affect yields [Adams, 1989;
Adams et al., 1995; Antle and Stöckle, 2017; Asseng et al., 2015] 3. These studies usually
ignore adaptation strategies due to the lack of information on farmers’ behaviors and
practices and then overestimate the impact of climate change on yields.

The Ricardian method is based on Ricardo’s approach that land values reflect land
productivity and allow for adaptation (land is put to best use) [Kurukulasuriya et al.,
2006; Seo et al., 2009; Seo, 2007; Mendelsohn and Dinar, 2003; Sanghi and Mendelsohn,
2008; Wood and Mendelsohn, 2014; Fleischer et al., 2008; Kurukulasuriya and Ajwad,
2006] . Net revenue or profit from farms are used as a proxy for land values and are
regressed on temperature and precipitation, with environmental and socioeconomic con-
trols such as soil quality, latitude for day length, population density for access to market,
and opportunity costs of the land. Large-scale studies [Mendelsohn and Dinar, 2003;
Schlenker et al., 2005; Kurukulasuriya et al., 2006; Seo et al., 2009; Seo, 2007] have ap-
plied the Ricardian model to large countries such as for the US [Schlenker et al., 2005;
Mendelsohn and Dinar, 2003], India and Brazil Sanghi and Mendelsohn [2008], and at
continental level, and compare values across climatic regions. In a cross-sectional analysis
of the two latter countries, [Sanghi and Mendelsohn, 2008] find lower climate sensitivity of
agriculture than agronomic models based on yields, because of adaptation mechanisms 4.
Continental cross-sectional Ricardian studies showed the heterogeneity of the sensitivity
to climate change within Africa. Kurukulasuriya and Mendelsohn [2008] emphasize the
importance of crop switching as an adaptation strategy for farmers. Looking at primary
crop choices and production for 11 African countries in 2003, they look at the marginal
effects of climate on conditional net revenue, taking into account the probability of crop
switching. Results show that farmers adapt their crop choices endogenously to the climate
they face, leading to smaller losses.

Smaller scale studies restrict to more homogeneous areas displaying important climate
3Asseng et al. [2015] even shows that crops models are less accurate at higher temperatures
4When comparing simulations based on their Ricardian analysis to findings from the agronomic liter-

ature, the authors find lower climate sensitivity of agriculture (net revenue reduction between 7-17 % in
India for a warming of 3.5 with a 7 % precipitation increases, vs yields losses between 30-40 %)
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variations [Fleischer et al., 2008; Kurukulasuriya and Ajwad, 2006; Wood and Mendel-
sohn, 2014; Ouedraogo, 2012; Molua and Lambi, 2007], Deressa et al. [2005]. In the Fouta
Djallon area (Northern Guinea and Southern Senegal) Wood and Mendelsohn [2014] show
that the effect of temperature increases and precipitation variations on net revenue de-
pends on the season considered, and that production losses from the summer and rainy
seasons can be balanced by benefits in the winter.

Ricardian approaches argue that the net revenue reductions are lower than predicted
losses in yields because farmers’ adaptation strategies and potential adjustments are taken
into account. However, the Ricardian approach is a partial equilibrium analysis. As agri-
cultural prices are assumed to remain constant, the comparability between negative ef-
fects on net revenue and yields does not hold if markets are not integrated, and Ricardian
analysis might underestimate the negative effects of climate on crops. Ricardian methods
might be biased due to omitted variables acting as confounders of climatic variables in
a cross-section. One concern is the forgotten role of irrigation, implicitly relying on a
cost fee adaptation, and cannot be used to estimate dynamic adjustments costs [Cline,
1996; Schlenker et al., 2005] 5. As positive effects of irrigation water access are higher in
hotter areas, cross-sectional estimates of the effect of temperature/rains on land values
are biased Schlenker et al. [2005]. 6.

In contrast, panel studies [Blanc and Schlenker, 2017; Dell et al., 2012; Deschênes
and Greenstone, 2007] look at exogenous year-to-year variations in temperature and pre-
cipitation and use location-fixed effects to absorb time-invariant factors. They rule out
confounding variation, accounting for the fact that areas might differ in other variables
correlated to climate. They estimate the effects of inter-annual variations in temperature
and rainfall on yields or profits from deviations from location-specific means. Barrios
et al. [2008] and Schlenker and Lobell [2010] use panel analyses to assess the response
of yields to climate change for specific Sub-Saharan crops and suggest that well-fertilized
modern seed varieties are more sensitive to climate variations.

However, effects and adaptive responses from short-term variations are likely to differ
from the ones from climate change in the longer run Dell and Olken [2014]; Auffhammer
et al. [2013]. Panel studies look at weather shocks, and because they only take into ac-

5Cline [1996] reproaches to Ricardian analysis to implicitly assume infinitely elastic supply of irrigation
water at today’s prices, potentially wrong for Sub-Saharan countries.

6Schlenker et al. [2005] empirically shows that land values vary for dry land versus irrigated American
counties.
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count coping strategies, they are not informative enough to predict the future evolution
of agricultural output. It is still unknown whether short-run responses to weather will in-
crease or decrease damages from long-run global warming. The sign of the bias introduced
by estimations from panel data is still debatable. It is commonly assumed that short-
run coefficients overestimate the negative effects of longer-run changes on agricultural
outcomes because, in the short run, farmers might not have the time to find available
adaptive strategies. Otherwise, Schlenker et al. [2005] gives the example of pumping
groundwater for irrigation during punctual drought as a short-run adaptation to weather
anomalies, which is not tenable in the longer run because of limited resource. This is
an example where short-run analysis might underestimate long-run impacts of climate on
yields under adaptation. Trying to give an answer to this debate for US trends, Burke
and Emerick [2016] compare estimates of the impacts of temperature and precipitation
of long difference versus panel strategies. They find negative responses of productivity to
decadal changes but cannot distinguish it from responses to annual variation in extreme
heat in the same period.

Thus, it is hard to distinguish the different impacts of short-run from long-run cli-
matic factors under adaptation behaviors. Besides, if farmers can choose strategies that
will increase yields, such as changing planting dates or crop variety, risk-averse ones might
decide to shift to activities less dependent on rainfall and temperature, such as migration,
tree planting, or diversification of business activities. If that is the case, studies will misin-
terpret the impact of climate on agricultural productivity because it does not distinguish
between different adaptive responses. One way to investigate this further is to rely on
a two steps analysis, taking into account the link between perception of climate change,
weather, and adaptation strategies [Maddison, 2007; Tambo, 2013; Silvestri et al., 2012;
Komowski et al., 2015]. In a case study in the region of Djougou in Benin, Komowski et al.
[2015] find that the most used strategies are tree plantation, shift of planting dates, and
use of new crop choices (new crops or mix-crops). Farmers do not directly identify climate
change and variability as the main reason for changes in practices and seem to respond to
favor short-run food security. In the Nigerian Savannah, the majority of respondents have
noticed both a decrease in rainfall and changes in the timing of the rains [Tambo, 2013].
The most common adaptation is the use of drought tolerant and early maturing varieties,
but also changes in dates, irrigation, afforestation, and off-farm income diversification.
Limitations of this two steps literature are that self-reported perceptions might be biased
and that perceptions are not enough to generate adaptive behaviors (credit constraints
for poverty-trapped households). Adaptation might happen under collective behaviors
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rather than based on individual perceptions, and adaptation can reduce vulnerability to
climate change without being made under this purpose.

Despite debate about the recovery of rainfall and the re-greening of Sahel since the
1990s, evidence points towards more erratic precipitations [Biasutti, 2019] and decline of
biodiversity [Brandt et al., 2015]. Farmers face uncertainty in the timing, amount and
pattern of precipitations. Understanding the long-run effects of climate on agricultural
production requires distinguishing the multiple historical responses. If Ricardian methods
look at long-run impacts and take into account farmers’ adaptation by using land values
(often proxied by net revenue), they are biased due to omitted variables acting as con-
founders of climatic variables in a cross-section. Using exogenous inter-annual changes
in rains and temperature, panel data rule out confounding variations. However, they
take into account coping strategies in responses to short-run shocks, that might differ
from adaptation to long-run global warming. The sign of the bias introduced by short-
run estimates is not direct. It is not clear whether estimation from panel data relying
on year-to-year variations over or underestimates future impacts of longer-run climate
change. This is especially the case for Sub-Saharan countries, highly dependent on agri-
cultural activity and with smallholder farmers that might be credit-constrained, lacking
information, or risk-averse. As there is a lack of studies differentiating between the ef-
fects of different types of adaptive behaviors, this research will contribute by comparing
responses and damages linked to inter-annual and longer-run fluctuations. An impor-
tant part of the paper is to link recent climate variability to long-term patterns and to
assess whether exposure to past dry conditions might affect recent responses to rainfall
shortages.

3 Data and Context

In this paper, I match socio-economic data from the Nigerian General Household Survey-
Panel (GHS), which is a four waves panel survey with a strong focus on agriculture, to
the CHIRPS product for rainfall.

3.1 Socio-economic data

The socioeconomic variables are built from the GHS, a panel survey conducted by the
Nigerian Bureau of Statistics (NBS [2012]), and the World-Bank as part of the Living
Standards Measurement Survey - Integrated Surveys on Agriculture (LSMS-ISA). The
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survey is a stratified two-stage sample design. Within each of the six Nigerian geopolit-
ical zones, the Enumeration Areas (EAs, also mentioned as villages in this paper) were
firstly selected with a probability proportional to the size, and then a random sampling
procedure was used to select surveyed households within each EAs. The four waves of
the LSMS-ISA are a subsample of the GHS-Panel Sample, which is initially made of 5000
households from 500 EAs, each contributing 10 households. The survey is nationally rep-
resentative, as well as representative of the Nigerian geopolitical zones. The GHS has
been conducted through four waves in 2010/2011, 2012/2013, 2015/2016 and 2018/2019.
In each wave, households are visited twice over a 12-month period in order to collect
detailed information on agricultural activities. Both post-planting, from September to
November, 7 and post-harvest, from February to April, data were collected with Agricul-
ture, household, and community questionnaires.

The GHS-Panel has been conducted over four waves, however, there has been a partial
refresh of the sample for the last wave During the fourth wave, 3600 households have been
refreshed, added to a subsample of the original panel from 2010. The long panel, includ-
ing the four waves, includes only 1447 households from 157 EAs. For this reason, this
paper focuses only on the three waves, 2010/2011, 2012/2013 and 2015/2016 in order to
build a 5 years panel, which is described in Table 9 in Section A.1 in Appendix. The final
sample used from the three waves includes 4162 households from 463 EAs, households
that have stayed within their 2010 village. Please note that 189 households migrated and
were tracked in the second and/or third waves but were not included in the final analysis.
Table 10 displays attrition rates for the second and third waves, and shows the levels of
attrition overall Nigeria at the household level (2.7% for the second wave vs 13% for the
third wave). Table 10 identifies higher levels of attrition in the North East and the South
West of the country for the 2015/2016 wave.

The coordinates of the EAs have been modified to keep the data anonymous, and the
displacement procedure relies on a random offset of cluster center coordinates (the aver-
age of household GPS within each EAs) within specific ranges (0-2km for urban areas,
while 0-5km offset for rural areas). As the distance between each EAs is higher, there is
no mismatch between villages, and I am able to match EAs with their respective climate
characteristics as the clusters of climate data is around 5km.

7For the three last waves, the timing of the post-planting survey was the same, from September to
November. In the first round, the post-planting occurred in August-October 2010 instead
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The GHS survey collects rich information on household on-farm and off-farm liveli-
hoods, total agricultural production, agricultural practices, food security outcomes, and
welfare variables. The panel dimension makes it possible to control for omitted variables
and to adjust for time and spatial-specific confounders. I will exploit a balanced panel in
order to capture the heterogeneity in household outcomes and choices when facing rainfall
variability.

3.1.1 Mains Variables

The main variables of interest are measured at the household level for each GHS wave.
This analysis focus on agricultural production and food security variables. Work-in-
progress is made in order to capture the impact of droughts on livelihood strategies -
including off and on-farm activities, income diversification [Fowowe, 2020], short-term mi-
gration [Ghebru et al., 2019]- as well as other agricultural choices - such as technology
adoption [Fadare et al., 2014], farm diversification [Ayenew et al., 2018], land fragmenta-
tion [Veljanoska, 2018]. Another variable of interest in this paper, which is used in the
heterogeneity analysis, is the year of acquisition of the plot by the household. This section
displays some context and descriptive statistics for the main variables.

Agricultural Production

The main variables computed to account for agricultural production are yields. Crop
yields are the total crop production per land area planted 8 and rely on self-reported
information, both on crop production, and cultivated area. Total crop production is com-
puted for each crop, on each plot of each household per survey rounds. The quantities are
computed in kilograms (kg), measured using the conversion factors given by the World
Bank, as self-reported crop production are displayed in non standard measurement units
9. The planted area for each crop is given in hectares (ha) 10 and is self-reported by the
household (same for the harvested area).

Self-reported crop yields suffer from measurement errors and are subject to non-
classical measurement errors (over-estimated on smaller plots) [Yacoubou Djima and

8Robustness checks will be done to compare yields per land area planted vs per land area harvested
9Households report harvested quantities in kg/gram/litre for standardized measures, but also in num-

ber of bags, baskets, basins, bundles, wheel barrows.
10The land area is measured using conversion factors as well, as the planted area is displayed in the

LSMS-ISA in heaps, ridges, stands, plots acres, hectares and sqmeters
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Kilic, 2021; Carletto et al., 2015]. The source of bias is twofold, as both the numera-
tor (total crop production) and the denominator (cultivated land area) face complications
[Yacoubou Djima and Kilic, 2021]. Self-reported crop productions suffer from potential
recall bias [Wollburg et al., 2021], a high probability of rounding the numbers [Wollburg
et al., 2021], and the noise introduced by the use of non-standard measurement units and
conversion factors. Accordingly, self-reported land areas suffer from the use of conver-
sion factors and rounding numbers [Carletto et al., 2015], and display discrepancies from
GPS-based measures [Yacoubou Djima and Kilic, 2021]. Literature tends to conclude
that farmers tend to over-report land areas, all the more at, the lower end of the plot
area distribution. Overall, self-reported yields tend to be over-estimated for smaller plots
when compared to objective measures, which suggests non-classical measurement errors
linked to these data [Yacoubou Djima and Kilic, 2021]. Table 12 from Section A.1 in the
Appendix displays descriptive statistics of the main variables of interest and shows the
discrepancies between GPS measures and Self-reported measures of land areas. In this
paper, I try to correct the self-reported yields by treating outliers according to different
techniques. 11. Another solution will be to look at the correlation of yields (at aggregated
levels) with satellite image products, and to correct yields in places with the lowest rates
of correlation. Work-in-progress ongoing, using the NDVI and the Global Dataset of His-
torical yields for major crops, the GDHY (Iizumi and Sakai [2020]; Wing et al. [2021]).

Work-in-progress is made in order to capture variations in agricultural production
using another measure than self-reported yields, such as agricultural income (which is,
unfortunately, a noisy measure as well). This is also the reason why I also address the
effects of rainfall shocks on food security outcomes.

Food Security

Food insecurity is mainly driven by four dimensions, including food availability, food
access, utilization, and stability [Bertelli, 2019]. In this paper, I will focus on the two
first dimensions, which are food availability and food access. Food availability is captured
using a food insufficiency measure, which is a dummy indicating whether, in the past 12
months, the household have been faced with a situation when it did not have enough food
to feed the household 12. Food access is measured using two indicators. Firstly, I use

11For the main analysis, the outliers are imputed at the median. For now, outliers are simply defined as
the 10% and 90% percentiles of the distribution, work-in-progress is made to change the identification of
the outliers, such as data points whose z-score is below the third standard deviation. Robustness checks
are made, yields are winsorized and trimmed at 10% and 5%.

12this indicator can be also used as a continuous variable, which indicated the number of months of
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the food security scale score, also named the Food Insecurity Experience Scale (FIES),
which captures the level of food insecurity based on 8 questions on the experience of the
last 7 days. These experience questions are listed in Table 11, and the variable displays
the number of days when the household faced the particular situation (ranges from 0,
never occurred to 7, occurred every day). The FIES is built by summing up all the
responses. We follow the strategy from Bertelli [2019], and in the main analysis, I reverse
the score so that the higher the FIES, the more food secure is the household, and we
standardize the indicator. Finally, I build the Household Dietary Diversity Score HDDS
which captures food diversity and is measured as the number of the food groups that the
households have consumed during the seven days preceding the survey. The HDDS has
been computed by Swindale and Bilinsky [2006], and gathers 12 different food groups : (1)
cereals, (2) root and tubers, (3) vegetables, (4) fruits, (5) meat/poultry and offal, (6) eggs,
(7) fish/seafood, (8) pulses/legumes/nuts, (9) milk and milk products, (10) oil/fats, (11)
sugar/honey, (12) miscellaneous. The main difference between the HDDS from Swindale
and Bilinsky [2006] is that it is computed based on the household consumption from the
last 7 days, vs the last day from Swindale and Bilinsky [2006]. Descriptive statistics of
the indicators are displayed in Table 12 from Section A.1 in Appendix.

Year of Land Acquisition

Another variable of interest used in the heterogeneity analysis is the year of acquisition
of the land. This is a single variable fixed over waves for each household. For households
cultivating several plots, I define the year of land acquisition as the year of acquisition of
their first plot. Figure 9b plots the distribution of this variable. If discrepancies existed
for the year of acquisition of a particular plot across the three waves, I favored the year
that was given by the manager of the plot. If discrepancies still persisted, I took the min-
imum amongst the year given by GHS. More than the timing of acquisitions, the survey
gives insights of how the plot was acquired by the household. Overall, 5.7% acquired it
via "outright purchase", 7.5% because "rented for cash or in-kind goods from" an outside
person. 8.6% respond having acquired the land "free of charge", while 78% report acquir-
ing it because it was "distributed by community or family, or family inheritance". Only
the last wave disentangles between "distributed by community or family" and "Family in-
heritance", and shows that the majority of households (70.5% vs 7.5) inherited the plot.
Inheritance might play an important role in the mechanisms of results from Section 6,
and work in progress is done in order to better understand the social and cultural norms

critical situation
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of land inheritance in Nigeria.

3.2 Climate data

I use the CHIRPS product by the Climate Hazard Center (CHC), which combines a
satellite-based rainfall product (CHIRP 13) with station observations data. It gives a
good spatial (0.05 lat/long), and temporal (daily, decadal and monthly) resolution for
historical (1981-2019) mean, maximum and minimum precipitations. It has been validated
over Africa and assessed as the best satellite-based product Dinku et al. [2018]. For
temperature, I use the CHIRTS product, also from the CHC, which also combines satellite
and station-based estimates of maximal temperature (Tmax), with the same spatial and
temporal resolution as CHIRPS Funk et al. [2019].

3.2.1 Context and climatology of Nigeria

Nigeria is a context highly dependent on agriculture and rain-fed activities, as 70% of
households are engaged in crop farming activities, 47% own or raise livestock, which
makes it highly vulnerable to climate events. Nigeria has an impressive population (the
most populated African country, around 200 millions), but lacks of adaptive capacity
due to low financial and technological tools, weak institutions and low knowledge of cli-
mate change. Nigeria includes an important part of Western African farmers that have
faced climate change and food security issues and had to adapt to rainfall changes over
time. Amongst the adaptive strategy described in the literature, portfolio diversification,
changing dates of planting, planting trees, and use of irrigation have been identified in the
southern Nigeria rainforest zone Onyeneke and Madukwe [2010]; Sofoluwe et al. [2011].
Crop diversification, but also the change of crop varieties to drought/early mature resis-
tant varieties, and farm relocation are used as adaptive strategies in the northern part
of the country Dabi et al. [2008]. Based on a field survey within the Nigerian savanna,
Tambo [2013] shows that most of the farmers have noticed changes in rainfall patterns
and that those who lack information on climate change are facing limitations in adapt-
ing. This shows the key role of the perceptions and experiences of climate change in the
adaptive capacity of Nigerian farmers.

Nigeria is a diverse setting, with high heterogeneity of livelihood zones and climatol-
ogy, from tropical rainforest and tropical monsoon in the south to tropical savanna and
Sahel climate in the North. Overall, it has a tropical climate with two seasons, the wet

13Climate Hazards Group Infrared Precipitation
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Figure 1: Rainfall long-term average

Notes : The Figures represent the spatial distribution of (a) long-term annul average, based on
the 1981-2019 long-term period, and (b) the long-term average of the long rainy season MJAS
of cumulative precipitation. Units of long-term averages are in mm.
Sources : authors’ elaboration on CHIRPS

season being from May to September (MJJAS) (cf Figure 10). Annual precipitation are
amongst the highest in Western Africa - especially in the Gulf of Guinea - with a long-
term average (1981-2019) of annual rainfall being 1491mm, and of cumulative rains over
the MJJAS wet season of 1101 mm. The country displays important differences in terms
of climatology, which are shown in Figure 1, which maps the long-term rainfall average of
annual precipitation (1 (a)) and of cumulative rains over the long-rainy season, MJJAS
(1 (b)). The means are computed from the long-term period from 1981-2019. Nigeria
is dominated by four climate types, changing in the meridional direction, from south to
north. Monsoons from the Atlantic Ocean influence the south tropical monsoon climate
(AM), which is the most humid region of the country, experiencing abundant rainfall (up
to 3750mm long-term annual mean). The geography of the southern part of Nigeria is
dominated by the Niger Delta, an important river area composed of deltas and humid
mangrove swamps. The tropical savanna climate covers the major part of the country,
and annual rainfall varies from 1000mm (lowlands) to 1500mm (southwestern). The zone
is made of the Guinean forest-savanna (plains and tall grass/trees), then the Sudan savan-
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nah is arider (short grass/trees). The northern part of Nigeria lies within the Sahel and
experiences a semi-arid climate (BSh), and has dramatic low rainfall, with annual means
varying from 500mm to lower than 250mm. The Sahel savanna is mostly composed of
grass and sand and is the aridest area o the country.

Across the country, seasonal rainfall patterns also vary sharply in the meridional di-
rection. When averaging rainfall at the country level, the main rainy season, which cor-
responds to the primary agricultural season, extends from May to September (MJJAS),
with a peak in August, as we can see in Figure 10. However, the south of Nigeria has
two rainy seasons (cf Figure 11). The first rainy season starts from March to July (peak
in June), which is followed by a short dry season (2/3 weeks) in August. The second
wet season lasts from September to October. In the northern part of the country, the
unique wet season is shorter, lasting from June to September. For the purpose of this
paper, we define the main rainy season over the country, the MJJAS period, from May to
September. Work-in-progress is made to refine the main rainy seasons according to the
agro-ecological zones.

Going further, defining the main rainy season according to the geography, work-in-
progress is ongoing to define the main agricultural season according to the main crop
(following Wichern et al. [2019], we can obtain crop specific parameters on rainfall using
the R package dismo and the Ecocrop database from the FAO). Indeed, the main culti-
vated crops differ between the main zones, as shown in Figure 13, mainly maize cassava
and yam in the south and maize, guinea corn, and beans in the north.

3.2.2 Long-term changes in rainfall patterns and characteristics

The Sahelian Droughts

Nigerian rainfall characteristics from the north, which is part of the Sahel, differ from
the characteristics of the rainfall along the coast of the Gulf of Guinea, in the southern
part of the country. However, the very dry decades of the 1970-1980 hit both of the re-
gions and had devastating impacts on food and livestock supply. Farmers and pastoralists
of the zone had to find adaptive strategies, such as changing the timing of the planting,
weeding, and harvesting using different types of crops and varieties, diversifying the liveli-
hoods Mortimore and Adams [2001].
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Western Africa Sahel faced severe droughts in the 1970s and in the 1980s. The 1980s
decade included some of the most extreme droughts years on record Aiguo et al. [2004];
Nicholson [2005, 2018], which were mostly enforced by sea surface temperature anoma-
lies Biasutti [2019]. The dry events of the 1980s called the ’Sahelian droughts,’ are said
to be among the most undisputed and largest recent climate changes recognized by the
climate research community Aiguo et al. [2004]. If these droughts are more associated
with the Sahel because they were more pronounced there, they were also dramatic in the
Gulf Guinea area. Figure 2 displays the departure of the rains for each pixel from the
long-term mean (1981-2019) for each year of the period over Nigeria. It gives the spatial
distribution of precipitation extremes for both deficits and intensive rains and displays as
well the comparability of the magnitudes of the different events. In line with climatologic
literature, Figure 2 clearly identifies the dry period of the 1980s and shows that both the
Sahelian and Gulf Guinean parts were severely impacted mostly in the early 80s, 1982,
and 1983 being intense dry years with national coverage. We observe the persistence of
the dry period up to 1987, mostly in the Sahelian part of the region. Figure 2 also shows
the high magnitudes of the 1980s dry events in comparison to the rest of the time period.

Debate on the recovery of the rains in the recent decades - Sahel region

Since the 1980s heavy rains over the Sahel and Guinea Gulf, the climatologic literature
observes rainfall trends going upward, referring to the most recent period from 1990 to
be a period of rainfall recovery for the Sahel Aiguo et al. [2004]; Nicholson [2005] and the
Guinea Gulf Sanogo et al. [2015]. However, the rainfall recovery is debated in the liter-
ature, both for the Sahelian Biasutti2019 and Gulf Guinean region Bichet and Diedhiou
[2018].

More evidence is found in the literature concerning the Sahel, in particular, thanks
to long-term observations such as the International African Monsoon Multidisciplinary
Analysis (AMMA - CATCH) program Panthou et al. [2018]. First, evidence from field-
surveys show that farmers have noticed recent changes in climate, such as changes in the
characteristics of the rain season and more erratic rains Tambo [2013]. Second, statistical
studies of rainfall data, both from station gauges and satellite observations, corroborate
farmers’ perceptions and refute the theory of the return to normal conditions. Giannini
et al. [2013] analyze rainfall gauges in Burkina Faso and Senegal and find that the recovery
of the rains is mainly born by daily rainfall intensity. Salack et al. [2014] look at interan-
nual rains and intra-seasonal droughts episodes using stations in Senegal and Niger and

16



show that if cumulative rains seem to have reached pre-1970s normal conditions, seasonal
rainfall amounts are susceptible to an extreme that implies delayed start and cessation of
cropping seasons. Accordingly, Panthou et al. [2014] observe an increased probability of
extreme daily rainfall looking at gauges from Benin, Burkina-Faso, and Niger.

Figures 14, 16 and 17 from Section A.2 display the long-term trends of climatic indica-
tors based on the CHIRPS product over the 1981-2019 period. Figure 14 shows the trends
of yearly precipitations (Figure 14 (a)), and of wet season MJJAS cumulative precipita-
tions (Figure 14 (b)) over the long-term period of 1981-2019. Both annual and MJJAS
precipitations display a significant increasing trend in the Sahelian part of the country,
with up to 11mm increase in the North East. This result is in line with the recovery
of the cumulative rains after the 1980s dry decade in the Sahel, a phenomenon that I
observe less in the south of Nigeria. Still, in the North, I observe significant changes in
the characteristics of the rains. I observe significantly increasing trends in the MJJAS
numbers of wet days (Figure 16 (a)), in the number of extreme rains as well (16 (c)),
and in the intensity of daily rains (Figure 17 (a)). Trends in patterns and characteristics
of the rains entirely depend on the long-term period chosen to describe the evolution.
When taking the 1981-2019 long-term period, the severe droughts from the 1980s account
for the evolution and mainly explain the partial recovery of cumulative rains. Figures
15 reproduce the exact same figures as Figures 14, but rely on the 30-year period from
1989 to 2019, instead of 1981-2019, excluding the extreme droughts from the 1980 decade.
If these figures show that the cumulative rains seem to be increasing on average in the
Sahelian region, the trends are no longer significant, suggesting interannual variability
occurring in the more recent decades instead of steady trends.

Debate on the recovery of the rains in the recent decades - Gulf -Guinea
region and Central Nigeria

Despite the importance of the dry 1980s period in the Gulf of Guinea region, less
analysis is made in comparison to the Sahel. However, there is also debate in the litera-
ture about the recent decades being a period of partial recovery of the rains of the region
Sanogo et al. [2015]; Bichet and Diedhiou [2018]. Using the CHIRPS product over the
1981-2014 overall, the Gullf-Guinea region, Bichet and Diedhiou [2018] find absence of
significant trends of rains during the wet season but find trends towards less frequent but
more intense rainfall. The results from our study are in line with these results. In Figures
14, 16 and 17, I display trends of rainfall indicators using the CHIRPS data over the 1981-
2019 long-term period. Figure 14 shows no significant trend evolution of the annual and
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wet season rains in the southern and central parts of Nigeria. However, Figure 16 displays
a significant decrease in the number of wet days over the main rainy season (Figure 16
(a)), in the south and central regions. This is associated with a significant increase in the
trends of the daily intensity of rains (Figure 17 (a)), up to 0.22 mm/day, and a significant
decrease in the length of the wet spells (Figure 17 (b)) Consecutive Wet Days Index CWD.

These evolution in the characteristics of the rains are in line with the literature on the
climate evolution of rains in the region of Gulf-Guinea, and refutes the fact that recent
decades represent a recovery period for Nigeria. We show that the absence of significant
decreasing or increasing trends of cumulative rains in the Southern part of Nigeria hides
a change in the characteristics of the rains. Rains over the wet season are becoming
less frequent, more intense, and more concentrated, which is expected to increase the
likelihood of extreme events such as droughts Bichet and Diedhiou [2018].
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Figure 2: Rainfall percent departures of the annual rains from the 1981-2019 mean

Notes : The Figure plots the percent departure from the long-term mean of the main rainy season (1981-2019) for each pixels.
Sources : author’s elaboration on CHIRPS data.
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3.2.3 Main shock of interest

As explained previously, Nigeria faced a severe dry period over the 1980 decade (especially
over the early years). Long-term trends evolution suggest less frequent but more intense
rains in the south/central region in recent decades, which can cause extreme events such
as droughts. If the long-term trends evolution of the Sahelian rains seem to increase
significantly, it is entirely driven by the intensity of the dry years over the 1980s. The
evolution of the 30 years period from 1981 to 2019 shows no significant trends, and evi-
dence from the literature points to more erratic rains, which increases the probability of
droughts as well. Section 3.2.2 shows the key role of the long-term period chosen when
looking at rain patterns, which will play a key role in the definition of our main shock of
interest.

The first part of this paper intends to look at the effects of short-term rainfall varia-
tion over agricultural outputs, the GHS panel survey covering the 2010-2016 period. The
main dependent variable for the main analysis is defined as follows. I construct a dummy
for each year, based on the long-term mean (that will be defined) of each GHS EAs (also
called villages in the paper), which equals 1 when the year/MJJAS is dry, 0 otherwise. I
define a year/MJJAS season as dry if the cumulative rains over the year/MJJAS are lower
than the 15th percentile of the cumulative rains for the EAs over the chosen long-term
period. The climatic indicator I will use for the main analysis is whether the year of the
survey is dry or if the agricultural season MJJAS is dry the year of the survey. The choice
of the threshold is discussed in Section 7.3.1.

Each GHS survey has two rounds. For instance, for the second wave, the post-planting
occurs from August to September 2012, while the post-harvest occurs from February to
April 2013. The critical timing of the rains for this cropping season is the wet rainy
season in 2012, which is defined form May to September, which is why I focus on the
rains occurring in 2012. Figure 12 plots this timeline between the cropping seasons and
the post-planting and post-harvest GHS rounds.

Figure 19 plots for each year the total number of EAs for which the dummy dry Di,t

equals 1. The three figures plot the dry variable for three long-term periods, each of thirty
years at least in order to catpure climate change Auffhammer et al. [2013]. Figure 19 (a)
plots over the 1989-2019 period, in order to emphasize recent droughts. Figure 19 (b)
plots over the 1981-2011 to capture the dry decade of 1980, while Figure 19 (c) plots over
the 1981-2019 period, which makes it possible the comparison between recent extreme
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events and the 1980s dry events. Figure 19 (b) identifies the droughts from 1980s, and
underlines the importance of 1982, 1983 and 1984 as dry year (we see that 1983 has a
national coverage, as all EAs are dry). Figure 19 (a) shows the 2001 dry year (El Nino
phenomenom), and the increase in the frequency of dry events since 2010, in particular
for the 2013, 2014 and 2015 years. Over the thirty year period, normal conditions would
imply a dry year occuring every decade. Having more than one dry year over the timing
of the GHS-panel is the shock that I exploit in order to look at the effect of rainfall vari-
ability on socio-economic outcomes. Finally, Figure 19 (c) compares the intensity of the
three main dry periods over 1981-2019 (which are 1982-1984, 2001 and 2013-2015).

The main shock used in this analysis will be based on the thirty long-term mean from
1989-2019. I intentionally do not take into account the 1980s dry year in the construction
of the independent variable, as they would have influenced the treated group from our

Figure 3: Number of dry EAs according to the long-term average

Notes : The Figures plot the number of GHS villages (over 483 EAs) for which the year is
dry, when the dry dummy is built according to different long-term mean. Figure (a) plots the
number of dry EAs per year, over the 1989-2019 long-term mean, Figure (b) according to the
1981-2011 long-term mean and Figure (c) according to the 1981-2019 long-term mean. Figure
(a) points the importance of the dry period from 2013-2016, Figure (b) of the dry perdion over
1981-1989, while Figure (c) makes it possible the comparison between the two dry spells. The
Figure is made for the EAs from the GHS panel.
Sources : authors’ elaboration on CHIRPS and GHS data.
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Difference-in-Difference strategy (EAs particularly shocked in the 1980s would have been
mechanically counted as control, as the main dry years would have been concentrated in
the 1980s). As the second goal of this paper is to understand whether the past experience
of the 1980s changes the impacts of short-term rainfall variability on agricultural out-
comes, I must avoid the independent variable to be de facto correlated to the exposition
to the 1980s droughts. I must avoid accounting as treated EAs as those that were the
least affected in the 1980s decade.

Figure 4: Spatial distribution of the number of dry rainy seasons -Binary
treatment- current years

Notes : The Figures plot the dry rainy seasons for each GHS village from the panel, per GHS
waves. Figure (a) plots the 2010 dry rainy seasons, Figure (b) in 2012, while Figure (c) in 2015.
Dry years are defined according to the 1989-2019 long-term average.
Sources : authors’ elaboration on CHIRPS and GHS data.

Figures 4, 5, as well as 18 and 19 in Appendix display the spatial distributions of the
shocks observed in Figure 19. Figure 4 plots the spatial variation of the main independent
variable and indicates for each survey year which villages are hit by a drought occurring
over MJJAS. It shows the treated and controls EAs that will play a key role in the two-way
fixed effects analysis. The dry years are mainly concentrated in the last wave (2015-2016),
and have spatial variation. The Southern and western parts of the country were mainly
affected in 2015. Figure 4 shows that the 2015 drought is spatially clustered, which is
discussed in Section 7.2.1. Figure 5 plots the number of dry years during the GHS survey
year and the two years before for each wave, based on the 1989-2019 long-term mean.
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It shows that some areas where hit by cumulative droughts over the 2013-2015 period,
which might have critical effects on agricultural production. The Southern part of the
country is mainly affected, with several villages impacted in the three years, while the
Central and North Eastern part of the country shocks vary between two and one dry years.

Figure 18 from A.3 maps the spatial distribution of the 19 (b) and shows the spatial
distribution of the 1980s dry period. Figure 19 shows the spatial distribution of Figure
19 (c), and underlines the relative importance of the shocks in the 1980s to the ones
occurring over 2011-2019.

Figure 5: Spatial distribution of the number of dry rainy seasons - current years

Notes : The Figures plot the number of dry rainy season for each GHS village from the panel,
per GHS waves. Figure (a) plots the number of dry rainy season from 2008 to 2010 (including),
Figure (b) from 2010 to 2012, while Figure (c) from 2013 to 2015, the maximum being three
dry rainy seasons. Dry years are defined according to the 1989-2019 long-term average.
Sources : authors’ elaboration on CHIRPS and GHS data.

4 Empirical strategy

4.1 Identification Strategy

The main identification strategy relies on a two-way fixed effects (TWFE) with a binary
treatment. I estimate the effect of being hit by a drought the year of the survey on socio-
economic outcomes including yields and food security indicators. The TWFE regression is
made over the three first waves of the GHS, in 2010, 2012 and 2015, with both household
and year fixed effects, on a balanced panel of households. The treatment is defined at the
EA level, as defined in Section 3.2.3 : it is the dummy being under a dry year, defined
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according to the 1989-2019 long-term mean period. GHS villages are mainly treated in
wave 3, as shown in Figure 5. The group of switchers are EAs that have experienced
a change in their treatment status over the three waves. More formally, the empirical
strategy can be formally written as follows :

Yh,i,t = α0 + α1 ×Di,t + α2Xh,t + γh + γt + ϵi,t (1)

Where Xh,t account for socio-economic characteristics of the households, including the
age, gender and level of education 14 of the household head, as well as the number of
adults (aged over 15), which can be used as a proxy for labor endowment. γh and γt

are household and time fixed effects adjusting for spatial and period specific confounders.
Di,t is the dmmy indicating a drought during the year of the survey round, which is dis-
played for each EAs in Figure 5. Errors ϵi,t are culstered at the EA level. Finally, Yh,i,t

represent a socio-economic outcomes. For agricultural production, Yh,i,t = log(yieldsh,i,t)

where yieldsh,i,t are the yields of the household at wave t, defined as yieldsh,i,t =
Qh,t

Ah,t
,

with Qh,t equals to the self-reported total crop production of the household at wave t (in
kg) and Ah,t the self-reported total planted land holding (h). For food security indicators,
Yh,i,t=FIEDh,t or HDDSh,t, as defined in Section 3.1.1.

The second aim of this paper is to understand whether experience plays a role in the
capacity of farmers to face rainfall shocks. I run a heterogeneity analysis in order to assess
whether the year of land acquisition can explain the results from regression 1. The year
of land acquisition (defined and described in Section 3.1.1) is a dummy, which equals 0 if
the household cultivates at least one plot that he has acquired before 1985, and 1 if after.
The Year of land acquisition is a variable that proxies the experience of the household on
his plot. The threshold of 1985 is used in order to account for the fact that the household
has faced the main dry years of the 1980s (1982/1983/1984) working the same land that
he works in recent years. The choice of the threshold year is discussed in Section 6. More
formally, the role of the year of land acquisition on the impacts of rainfall variability is
estimated following the equation :

Yh,i,t = α0 + α1 ×Di,t + α2 ×Di,t × Lh + α3Xh,t + γh + γt + ϵi,t (2)

Where Lh is the dummy of land acquisition.
14The level of education of the household head is defined as the following : 0 if the head has no diplomas,

1 if he/she completed primary school 2 if he/she completed secondary school
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4.2 Common trend assumption

The key assumption of a difference-in-difference (DiD) strategy is that the dependent
variable would follow the same trends in the absence of droughts both in treated and con-
trol villages. In this section, I test for the common trend assumption using pre-treatment
data. As Figure 4 shows, the drought mainly occurred during the last wave in 2015. For
this test, I implemented a simple DiD design where I select villages that were not hit by
any drought over wave 1 and wave 2. Treated villages were hit by the 2015 drought, while
control villages were not. With this design, the evolution of yields over wave 1 and wave
2 are pre-treatment observation data that I use to test for the common trend assumption.

Figure 6 plots the linear trends of the logarithm of yields across the three survey
rounds and distinguishes between treated and control villages. Figure 6 shows that yields
follow similar trends over waves 1 and 2, suggesting that the treated and control villages
follow a similar pattern of agricultural production. This test is only descriptive as it does
not take into account any controls or fixed effects.

Figure 6: Linear trends of agricultural production across treatments

Notes : The Figure plots the linar trends of the log(yields) across survey rounds, averaged over
treated and control groups, defined as being hit by the drought in 2015.
Sources : authors’ elaboration on CHIRPS and GHS data.
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5 Results

5.1 Agricutural Productivity

Table 1: Effects of short-term droughts on yields

Annual drought MJJAS drought

All crops Main crops All crops Main crops

Yield (log) (1) (2) (3) (4)

Drought -0.140** -0.128** -0.148** -0.111*
[0.0588] [0.0598] [0.0624] [0.0625]

Nb. Adults -0.0185 -0.00523 -0.0179 -0.00449
[0.0148] [0.0153] [0.0148] [0.0153]

Gender head -0.00713 0.0252 -0.00520 0.0258
[0.106] [0.111] [0.107] [0.111]

Age head -0.00271 -0.00441** -0.00261 -0.00430**
[0.00216] [0.00219] [0.00215] [0.00216]

Education head -0.0180 -0.0298 -0.0196 -0.0314
[0.0431] [0.0437] [0.0424] [0.0433]

Observations 5274 5183 5274 5183
R2 0.523 0.537 0.523 0.537

log(yields) Mean 7.305 7.344 7.305 7.344
Yields Mean 2369 2491 2369 2491

Household FE Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes
Balanced Panel Yes Yes Yes Yes

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p <
0.05,∗∗∗ p < 0.01.

Table 1 displays results from estimation 1, showing the effect of droughts on agricul-
tural outputs 15. Columns (1) and (3) give the results on the yields for all types of crops,
while columns (2) and (4) for the main crops cultivated in Nigeria 16. Columns (1) and
(2) display the effects of a drought defined on an annual basis, while columns (3) and (4)
during the main rainy season MJJAS. All estimations are made on a balanced panel of
crops, meaning that each household intervenes three times in the regression.

The results show that being hit by drought during the main rainy season decreases
15I have to account for the fact that I am estimating a semi-log functional form, the yields being

measured in terms of the log of the yields, while the independent variable is a dummy).
16The list of the main crops is : cassava, maize, sorghum, cowpeas, yam, millet, groundnut, rice,

cocoyam and oil palm tree.
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yields by around 14%, which is significant at 5%. On average, this corresponds to a
decrease in yields by 333 kg/ha. This magnitude is in line with results from the literature,
Veljanoska [2018] finding, for instance, that one rain deviation more reduces yields by
6.6%.

5.2 Food Security

Table 2 displays the results for the household security indicators. Columns (1) and (2)
give the results of an annual drought, while columns (3) and (4) of a drought occurring
during the agricultural season MMJAS. The gender of the household head is determinant
in terms of food insecurity. I observe no statistically significant result regarding the FIES
indicator. Regarding the food diversity score, I observe that being hit by a drought
during MJJAS implies that the household loses around 0.14 food group over 12, which
corresponds to a 1.2% decrease. This result suggests that droughts decrease the food
diversity of households, which is only significant at the 10% level.

Table 2: Effects of short-term droughts on food security

Annual drought MJJAS drought

FIES HDDS FIES HDDS

(1) (2) (3) (4)

Drought -0.318 -0.0149 -0.264 -0.140*
[0.268] [0.0834] [0.243] [0.0806]

Nb. Adults -0.0526 -0.0180 -0.0521 -0.0209
[0.0645] [0.0201] [0.0643] [0.0200]

Gender head -1.622*** -0.240** -1.620*** -0.236**
[0.464] [0.110] [0.464] [0.110]

Age head 0.0155 0.000662 0.0158 0.000693
[0.0115] [0.00320] [0.0115] [0.00320]

Education head 0.231 0.0737 0.230 0.0739
[0.149] [0.0486] [0.149] [0.0486]

Observations 11721 12123 11721 12123
R2 0.570 0.631 0.570 0.632

Outcome mean -3.210 8.218 -3.210 8.218

Household FE Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes
Balanced Panel Yes Yes Yes Yes

Notes: Standard errors clustered at the village level, ∗p <
0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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6 Heterogeneity analysis

The main research question of this paper is to understand the role of experience and of
exposure to the 1980s droughts on the impacts of short-term droughts. We proceed to a
heterogeneity analysis, looking at the heterogeneity of the results from Section 5 according
to the year of acquisition of the first plot purchased by the household and whether this plot
was acquired before or after the main droughts of 1980s. As the year of land acquisition
and the exposure to past droughts are highly endogenous variables, this section is mainly
descriptive and intends to give some suggestive insights into the role that plays exposure
to past climate events on households’ vulnerability. Results can not lead to any causal
interpretation.

6.1 Year of land acquisition

Table 3 gives the results for the yields of the main crops, while Table 4 for the HDDS.
All estimations are made of a balanced panel for each dependent variable. From now on,
I will only look at the effects of droughts occurring during the rainy MJJAS season, as it
captures critical shocks of the cropping season. I control for the number of adults in the
household and for the age, gender, and especially the educational level of the household
head.

Columns (1) and (2) give the results of regression 2, when the short-term drought is
interacted with the dummy of the year of land acquisition. Columns (2) control for the
effect of the shock interacted with the household head’s age, which is another measure of
experience. Table 3 column (1) shows that short-term drought decreases yields by 19% for
households that acquired their first land after 1985, in comparison to those who acquired
it previously. The interaction term suggests that having acquired the land before 1985
attenuates the negative effect of being hit by a drought on yields. For households that
acquired the land before, being hit by a drought decreases yields by 3%: the decrease is
attenuated by 16 p.p in comparison to the decrease faced by households who acquired
the land after.This result suggests that working on the same land that was hit by the
intense droughts from 1980s reduces the vulnerability to the 2015 drought. This is a sug-
gestion of the role that plays experience, knowledge and past exposure to intense dry year.

As the year of land acquisition is an endogenous variable, the interaction term does
not directly capture exposure to the 1980’s drought. Column (2) shows that the result
does not longer hold when controlling for the dummy drought interacted with the age of
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the household head. Thus, columns (3) and (4) rely on another dummy, called Dummy
exposure, which equals 1 if the household has acquired its land before 1985 and has been
exposed to severe droughts over 1982/1983/1984, 0 otherwise 17.

I consider that a household has been exposed to severe droughts in the 1980s if it has
been hit by at least two droughts. In order to limit endogeneity issues, I construct for
the 1980s the dry dummy year in comparison to the long-term period from 1981 to 2011.
In this sense, I avoid the fact that being hit by droughts in the 1980s decreases de facto
the likelihood of being hit by a drought in more recent years (as the dummy is defined
based on the 1989-2019 mean). However, endogeneity between recent and 1980s droughts
still remains, as being severely hit in the past might still increase the probability of being
hit by intense droughts in recent years, through environmental degradation, for instance.
Again, this result is only descriptive and can not be interpreted in a causal way.

Column (3) suggests that the negative effects of recent drought on yields is mainly
driven by individuals for which the dummy exposure is null. The interaction term suggests
that individuals exposed to the 1980s droughts have an attenuation of the yield decrease
by 38 p.p, compared to the yield decrease of households that were not exposed. This
suggests an over-reaction of these households, for which being hit by a drought increases
yields by 20% (-0.156+0.38). This might be explained by the fact that households im-
plement adaptation strategies, whose benefits outweigh the negative effects of droughts.
Again, this is only a suggestive insight, not a causal, and the magnitude effects are rel-
atively large. Column (4) controls for the interaction of the recent shock and the age of
the household.

Table 4 displays the same analysis for the HHDS, and shows little effect on food se-
curity.

17I do not run a triple interaction, mean that I do not directly interact the year of land acquisition and
exposure to the 1980s drought because of endogeneity issues
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Table 3: Effects of short-term droughts on yields - Heterogeneity according to
year of land acquisition

Main crops

Yield (log) (1) (2) (3) (4)

Drought (MJJAS) -0.198** -0.222 -0.156** -0.250
[0.0863] [0.192] [0.0657] [0.194]

Drought × Acquired Land Before 1985 0.164* 0.160
[0.0991] [0.105]

Drought × Dummy exposure 0.380*** 0.377***
[0.111] [0.111]

Drought × Age 0.000472 0.00174
[0.00325] [0.00309]

Nb. Adults -0.00289 -0.00281 -0.00240 -0.00199
[0.0154] [0.0153] [0.0153] [0.0152]

Gender head 0.0160 0.0160 0.0313 0.0304
[0.112] [0.112] [0.112] [0.112]

Age head -0.00408* -0.00414* -0.00441** -0.00460**
[0.00215] [0.00216] [0.00215] [0.00217]

Education head -0.0271 -0.0273 -0.0294 -0.0296
[0.0429] [0.0428] [0.0432] [0.0432]

Observations 5183 5183 5183 5183
R2 0.538 0.538 0.538 0.538

log(yields) Mean 7.344 7.344 7.344 7.344

Household FE Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes
Balanced Panel Yes Yes Yes Yes

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 4: Effects of short-term droughts on HDDS - Heterogeneity according to
year of land acquisition

HDDS

(1) (2) (3) (4)

Drought (MJJAS) -0.144 -0.241* -0.122 -0.230
[0.107] [0.144] [0.100] [0.147]

Drought × Acquired Land Before 1985 0.122 0.106
[0.120] [0.123]

Drought × Dummy exposure 0.304 0.298
[0.231] [0.230]

Drought × Age 0.00221 0.00231
[0.00220] [0.00217]

Nb. Adults -0.0408* -0.0397* -0.0401* -0.0389*
[0.0232] [0.0231] [0.0233] [0.0233]

Gender head -0.133 -0.130 -0.130 -0.126
[0.133] [0.133] [0.132] [0.132]

Age head -0.000516 -0.000895 -0.000602 -0.000980
[0.00383] [0.00388] [0.00383] [0.00388]

Education head 0.0821 0.0817 0.0802 0.0801
[0.0567] [0.0566] [0.0567] [0.0566]

Observations 8793 8793 8793 8793

R2 0.613 0.613 0.613 0.613

Outcome Mean 8.006 8.006 8.006 8.006

Household FE Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes
Balanced Panel Yes Yes Yes Yes

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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6.2 Exposure to the 1980s droughts

As the likelihood of being hit by droughts in the 1980s is endogenous to the likelihood
of being hit in more recent years, the interaction with the Dummy exposure raises endo-
geneity issues. To deal with this issue, I investigate in this section the role of the year
of land acquisition for villages that were severely hit in 1980 on one side and for villages
that were less hit in the 1980s on the other side.

Table 5 gives the results for the yields of the main crops. Column (4) to (6) focuses on
the sample of villages that were hit by two droughts in the early 1980s, while Column (1)
to (3) focuses on the other less exposed villages. Columns (1) and (4) give the effects of
being hit by a short-term drought on yields. It shows that for villages that were not highly
affected in the 1980s, being hit by a dry rainy season decreases yields by 15.6%. This
effect does not hold for villages hit in the 1980s, which suggests that the negative effects
on yields are mainly driven by households who were not exposed to the 1980s droughts.

Columns (2) and (5) look at the interaction with the dummy of the year of land acqui-
sition. Column (4) shows that for the comparison across households less hit in the 1980s,
the decrease is only significant for households who acquired their land later. However,
the year of land acquisition does not seem to play a key role as the interaction term is
not significant. Column (5) shows that, for villages that were highly affected by the 1980s
droughts, there is no longer a significant decrease in agricultural production. On top of
that, the year of land acquisition seems to play a significant role, as, for households who
acquired their land before 1985, the recent drought increases yields by 35%, in compari-
son to those who acquired it later. This is in line with the results found in Table 3, with
large magnitude effects, raising endogeneity issues. Columns (6) and (7) control for an-
other measure of experience, the interaction of the shock with the age of the household age.

Table 6 displays the same analysis for the HDDS indicator. Column (1) shows that
being hit by a short-term drought decreases the food diversity by 0.3 food group, which
corresponds to a 2.5% decrease. As column (4) displays no significant effects, it shows that
the negative effects of short-term drought on food diversity is mainly driven by households
who were less affected in the 1980s.

Results from the heterogeneity analysis are based on a reduced form. It is not possi-
ble to conclude whether this means that the acquisition of the land before past extreme
events results in better adaptive strategies and a better knowledge of perception. However,

32



Table 5: Effects of short-term droughts on yields - Heterogeneity according to
exposure to the 1980s droughts

Main crops

Not hit by 1980s droughts Hit by 1980s droughts

Yield (log) (1) (2) (3) (4) (5) (6)

Drought (MJJAS) -0.156** -0.227** -0.458* 0.0241 -0.130 0.202
[0.0787] [0.0987] [0.239] [0.122] [0.188] [0.282]

Drought × Acquired Land Before 1985 0.126 0.0935 0.351* 0.433**
[0.107] [0.113] [0.200] [0.212]

Drought × Age 0.00447 -0.00737
[0.00402] [0.00553]

Nb. Adults 0.00153 0.00284 0.00404 -0.0136 -0.00996 -0.0101
[0.0207] [0.0208] [0.0207] [0.0224] [0.0224] [0.0226]

Gender head 0.0410 0.0327 0.0324 -0.0527 -0.0517 -0.0505
[0.125] [0.126] [0.127] [0.262] [0.267] [0.266]

Age head -0.00760*** -0.00736*** -0.00808*** 0.000302 0.000351 0.000805
[0.00262] [0.00260] [0.00262] [0.00349] [0.00346] [0.00344]

Education head -0.0411 -0.0370 -0.0394 -0.0193 -0.0137 -0.0127
[0.0561] [0.0556] [0.0553] [0.0693] [0.0678] [0.0668]

Observations 3185 3185 3185 1998 1998 1998
R2 0.515 0.515 0.516 0.523 0.525 0.525

log(yields) Mean 7.500 7.500 7.500 7.094 7.094 7.094

Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Balanced Panel Yes Yes Yes Yes Yes Yes

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 6: Effects of short-term droughts variability on HDDS - Heterogeneity ac-
cording to exposure to the 1980s droughts

HDDS

Not hit by 1980s droughts Hit by 1980s droughts

(1) (2) (3) (4) (5) (6)

Drought (MJJAS) -0.281*** -0.215 -0.305* 0.0117 -0.120 -0.173
[0.108] [0.137] [0.172] [0.128] [0.200] [0.279]

Drought × Acquired Land Before 1985 0.0554 0.0384 0.358 0.351
[0.133] [0.138] [0.257] [0.259]

Drought × Age 0.00226 0.00119
[0.00270] [0.00403]

Nb. Adults -0.0402 -0.0464* -0.0449 0.00616 -0.0299 -0.0297
[0.0247] [0.0280] [0.0279] [0.0334] [0.0406] [0.0406]

Gender head -0.231* -0.151 -0.146 -0.255 -0.0938 -0.0941
[0.133] [0.155] [0.155] [0.195] [0.257] [0.257]

Age head -0.00206 -0.00245 -0.00292 0.00387 0.00195 0.00183
[0.00409] [0.00486] [0.00496] [0.00505] [0.00620] [0.00623]

Education head 0.0151 0.0451 0.0448 0.141** 0.124 0.124
[0.0658] [0.0761] [0.0760] [0.0708] [0.0844] [0.0845]

Observations 7230 5400 5400 4893 3393 3393

R2 0.643 0.617 0.617 0.590 0.574 0.574

Outcome Mean 8.492 8.281 8.281 7.815 7.568 7.568

Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Balanced Panel Yes Yes Yes Yes Yes Yes

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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I show that having a long-lasting experience of the cultivated land reduces vulnerability
to rainfall shocks, especially when having experience of the land under past extreme dry
conditions. This is only a piece of descriptive evidence.

6.3 Endogeneity and discussion

The year of land acquisition is a highly endogenous variable. It might be endogenous to
climate shocks, both those occurring in recent years and those that occurred in the 1980s,
as farmers make their choice according to the accumulation of droughts. Besides, it is, of
course, correlated to other measures of experience such as the age of the household head
or the educational level. Even if the heterogeneity analysis is not a causal exercise, it
might still be interesting to investigate to which variables the year of land acquisition is
correlated.

Table 7: Table of correlation -land of year acquisition

Acquisition before 1985 Year of land acquisition

(1) (2)

Drought 2015 (MJJAS) 0.0247 -1.740
[0.0347] [1.448]

Drought 1980 (MJJAS) -0.0357 1.446
[0.0299] [1.211]

Nb. Adults 0.00656 0.0383
[0.00501] [0.201]

Gender head 0.0317 -1.863
[0.0256] [1.142]

Age head 0.0106*** -0.429***
[0.000739] [0.0318]

Education head -0.0402** 1.624***
[0.0164] [0.567]

Observations 2931 2931

Outcome mean 0.525 1982.9

Region FE Yes Yes

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p <
0.05,∗∗∗ p < 0.01.

Table 7 runs two simple OLS regressions with region-fixed effects. Column (1) looks
at the correlation of the dummy variable, which indicates whether a household acquired
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the land before 1985, while column (2) looks at the continuous variable, which is the year
of land acquisition. As both variables are fixed over time, I only look at the third wave,
2015/2016, and at the correlation with the drought occurring in 2015, which is the most
important. Table 7 shows that both variables do not seem to be correlated with the cli-
mate shock in 2015 nor in 1980. The timing of the land acquisition is, as expected, mainly
correlated with the age of the household head and his educational level. The earlier the
land has been acquired, the older and less educated the household head is.

There is no way to rule out entirely the possibility that these heterogeneity effects
might be driven by endogenous self-selection occurring after the 1980s droughts. One main
omitted variable in this paper is wealth, which might be highly correlated to the year of
land acquisition. The previous analysis can not rule out that the observed heterogeneity
is driven by differences in the wealth of the households rather than experience. The
way the land was acquired might play a key role as well as if the land was acquired
through inheritance, the person in charge of the plot would have had experience on the
plot. Eventually, as the heterogeneity is mainly driven by agricultural production, it
would be insightful to verify if adaptation occurred and through which method. Thus,
work-in-progress is ongoing to include a variety of asset wealth indicators, the effect of
inheritance, and identify adaptation strategies such as planting trees, changing planting
dates, and crop diversification of innovation adoption.

7 Robustness and Sensitivity analysis

7.1 Placebo tests

This section runs inference tests to check whether the effect of short-term droughts on
agricultural production is unlikely to be observed by chance. I test the main result from
Table 1 column (3), which indicates that being hit by a drought decreases yields by 14.8%.
I draw 1500 permutations and compute the precise p-value based on the distribution of
the 1500 counterfactual treatment-effects, under the sharp null hypothesis of no effect 18.

Figure 7a runs spatial counterfactuals as villages are assigned rainfall shocks from a
randomly selected villages. This maintains the distribution of the independent variable
and removes spatial patterns. This inference test accounts also for spurious correlation
linked to spatially dependent trends [Lind, 2019]. Figure 7b randomly changes the timing

18The test is done using the ritest STATA command.
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Figure 7: Effects of short-term droughts on yields - Temporal randomization
inference tests

(a) Random sublocation (b) Random timing

Notes: The two figures represent the distribution of the treatment effects of being hit by a
drought when conducting 1,500 permutations. Figure (a) randomly changes the villages alloca-
tion to droughts while Figure (b) randomly changes the timing of a drought for each village. The
vertical line indicates the location of the estimate under the implemented treatment assignment
(Table 1 Column (3)), and displays the new estimated p-value.
Sources: Authors’ elaboration on CHIRPS and GHS data.

of the rainfall shocks for each village.

Both simulations show that the model is not misspecified at the 1% level. The distri-
bution of treatment effects drawn from permutations is shifted around zero and has the
shape of a standard normal distribution. The vertical lines indicate the location of the
main result from Table 1 −0.148∗∗∗.

7.2 Correlations

7.2.1 Spatial correlation

This section accounts for the spatial correlation within 100km using Conley [1999] stan-
dard errors, focusing on the results obtained for agricultural production. Table 8 shows
that the results from Table 1 are robust (Column (1)), as well as those from Table 3
(Columns (2) and (3)) and those from Table 5 (Columns (4) to (7)).
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Table 8: Effects of short-term droughts on yields - Spatial correction (100km)

Main crops

All Observations Not hit in 1980s Hit in 1980s

Yield (log) (1) (2) (3) (4) (5) (6) (7)

Drought (MJJAS) -0.111* -0.198** -0.156** -0.156** -0.227** 0.0241 -0.130
[0.0652] [0.0996] [0.0686] [0.0781] [0.106] [0.129] [0.204]

Drought × Acquired before 1985 0.164 0.126 0.351*
[0.122] [0.137] [0.204]

Drought × Dummy exposure 0.380***
[0.105]

Observations 5192 5192 5192 3194 3194 1998 1998
R2 0.00273 0.00384 0.00491 0.00582 0.00658 0.000433 0.00374

log(yields) Mean 7.344 7.344 7.344 7.501 7.501 7.094 7.094

Controls Yes Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes Yes
Balanced Panel Yes Yes Yes Yes Yes Yes Yes

Notes: Conley [1999] standard errors correcting for spatial correlation at 100km , ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p <
0.01. Each estimation controls for the number of adults in the household, the gender, age and educational level
of the household head.
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7.3 Changing thresholds

7.3.1 Rainfall threshold

In this section, I discuss the choice of the threshold to define a dry year. In the main
analysis, a year is defined as dry if the cumulative rains over MJJAS are under the 15th
percentile of the rainfall distribution of each village over the 1989-2019 long-term mean.
Figure 8b gives the number and percentages of treated and control villages changing for
different thresholds defining the treatment, which is mainly being hit by the 2015 drought.
For instance, I could not choose the 10th threshold as very few villages were treated (4%).
I choose the 15th decile as the best trade-off between being hit by a severe drought and
having enough treated observations.

Figure 8a plots different estimations of the effect of short-term droughts on yields from
Table 1 column (3), changing the thresholds of treatment. The coefficient under the 15th
is the main estimation from Table 1. As expected, there is no effect of the 10th decile,
mainly due to a limitation in the number of treated observations. The negative effect
remains significant up to the 20th threshold and is then attenuated when the severity of
the dry shock decreases.

Figure 8: Effect of droughts on yields - changing drought threshold

(a) (b)

Notes :Figure (a) plots the effect of being hit by a drought on yields changing the threshold
for being treated. Figure (b) gives, for each threshold, the percentage of treated and control
villages, as well as the number of villages in each group.
Sources : author’s elaboration on GHS and CHIRPS data.
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7.3.2 Timing of land acquisition

The threshold used to define the dummy of year acquisition of the land, 1985, is chosen
in order to capture both experiences of the land under dry conditions and to compare
households that have acquired their land after the intense Sahelian droughts or before.
In this Section, I discuss the choice of this threshold to convince the reader that it is the
past experience of the early 1980s that plays a key role.

Figure 9: Rainfall variability effects according to the year of land acquisition

(a) (b)

Notes :Figure (a) plots the results of the estimation 2 on the log of yields for different threshold
for the dummy of year acquisition. 5% and 10% significance are given. Figure (c) plots the
distribution of the distance.
Sources : author’s elaboration on GHS and CHIRPS data.

Figure 9a plots the results of the estimation 2 on the log of yields for different thresholds
for the dummy of year acquisition. In red is plot α1, the estimator for households that
acquired their first land after the indicated year, and in blue is plot the α2, meaning
the interaction term. For instance, the two first dots on the left give the two estimators
from the same regression, where the dummy drought in recent years is interacted with
a dummy, which equals 0 if the household has acquired the land after 1980, 1 if after.
The five pairs of dots correspond to five distinct regressions. Figure 9a shows that the
difference of impacts between before/after hous
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8 Conclusion

This paper looks at whether the experience of past dry events can reduce the vulnerabil-
ity of households to current rainfall variability. First, I analyze the statistical trends of
rainfall over the 1981-2019 period in Nigeria, using the satellite and stations based rainfall
product CHIRPS. If I show evidence of the long and severe dry period of the 1980s both
in the Sahelian and Gulf Guinean regions, I find different patterns. This paper displays
statistics that refute the recovery of rains in the Sahel and observe in the south that, if
the cumulative rains show no significant patterns, rains are becoming significantly less
frequent and more intense, which increases the probability of extreme events in the more
recent decades. In line with this result, I give evidence of a period of high occurrence of
droughts over the 2013-2015 period.

This paper matches a three-wave panel survey from 2010-2016 from the GHS, with
a strong focus on agricultural outcomes, to the CHIRPS product. I use a two-way fixed
effect strategy and exploit the variation in the occurrence of droughts, mainly over the
last wave. First, I look at the short-term effects of droughts on agricultural production
and food security indicators. I show that being hit by a drought decreases yields by 14%,
and decreases the food diversity of households by around 1%. Second, I try to assess
the role of experience in the capacity to find adaptive strategies and cope with rainfall
variation. I look at the heterogeneity of the impacts according to the experience of the
plot, using the timing of the year of acquisition of the first plot of the household. I
compare the impacts of rainfall shocks of households that acquired their first plot before
the 1980s dry period to those that acquired it after. Results show that one additional
dry year decreases the yields on average by 19% for households that acquired their first
land after 1985, in comparison to those who acquired it previously. This result suggests
that having a long-lasting experience under extreme dry events on cultivated land reduces
vulnerability to rainfall variability. This is only a piece of descriptive evidence, which can
not lead to causal interpretation.

Important further work will be to understand in more detail the rules of land ac-
quisition in Nigeria and check the role of acquisition through inheritance. Refining the
definition of the rainy season according to the geographical context and the main crop is
also the next step in the paper. A main limitation is the reduced form analysis. A key
question is to assess the differences in terms of agricultural practices between households
that experienced the 1980s with their land and the others. Work is still needed in order to
understand what are the good agricultural practices facing rainfall variability. Additional
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data, based on satellite images, can also be used to look at correlations with our measure
of yields.
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A Appendix

A.1 Descriptive Statistics

Table 9 give the composition of the Original Sample (columns (1) and (2)), and the final
panel sample for the three first GHS rounds, including households that have moved and
been tracked by the LSMS-ISA teams (column (5)), per Nigerian geopolitical zones. Table
10 gives insights of the attrition rates per waves and geopolitical zones of Nigeria.

Table 11 displays the different questions used in the survey to build the FIES (or scale
score) food security variable. Table 12 displays the descriptive statistics of the main vari-
ables of interest of the paper. Each variables is driven from a panel sample. Households
Characteristics outcomes statistics are given for the whole panel sample, Agricultural
production and practices are given for the panel sample for which each household culti-
vated at least one plot for each wave (or answered), while Food security outcomes panel
samples for which we were able to build the indicator for each waves per households.
The number observation (column (6)) display the number of households from the sam-
ple, the real number of observations being three times this number (as for three waves).
The descriptive statistics show discrepancies between GPS-based and self-reported plot
areas, as mentionned in the literature Yacoubou Djima and Kilic [2021], both in terms
of total land holding per household and average plot area per household. Please note
that the GPS measures are asked for the entire land holdings of the households, while
Self-Reported (SR) measures only for plots cultivated by the household at the time of
the survey. The descriptive statistics show that SR measure of plot areas overestimate
the land areas in comparison to GPS measures, which seem to be mainly explained by
outliers and lower/higher end of the plot distribution. Indeed, while means highly differ,
median seem to be more comparable. As Self-Reported total crop production can be also
mismeasured, we observe that the median highly differ from the mean. Self-Reported
Yields are thus twofold noisy, and the variables displayed in Table 12 have been treated
for outliers (winsorized by the median at 10%).
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Table 9: Descriptive Statistics of the 6 years panel per geopolitical Zones

Zones Original Sample Panel Sample Panel Sample Total % Original Sample

2010-2011 Original Location Moved/Tracked

(1) (2) (3) (4) (5) (6) (7)

EAs HHs EAs HHs HHs HHs %

North Central
Urban 22 217 22 200 1 201 7.37
Rural 57 577 57 548 11 559 3.12
Total 78 794 78 748 12 760 4.28

North East
Urban 14 138 9 79 6 85 38.41
Rural 63 659 52 521 6 527 20.03
Total 77 797 61 600 12 612 23.21

North West
Urban 17 170 16 150 2 152 10.59
Rural 69 728 69 704 10 714 1.92
Total 85 898 84 854 12 866 3.56

South East
Urban 21 204 21 172 4 176 13.73
Rural 57 590 57 542 10 552 6.44
Total 76 794 76 714 14 728 8.31

South South
Urban 23 229 23 186 15 201 12.23
Rural 55 540 55 460 32 492 8.89
Total 78 769 78 646 47 693 9.88

South West
Urban 63 612 62 417 71 488 20.26
Rural 26 253 26 183 21 204 19.37
Total 87 865 86 600 92 692 20

Nigeria
Urban 160 1570 153 1204 99 1303 17.01
Rural 327 3347 316 2958 90 3048 8.93
Total 481 4917 463 4162 189 4351 11.51
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Table 10: Attrition rates for wave 2 and 3 per geopolitical zones

Zones Original Sample Location Moved Total Attrition (%) Location Moved Total Attrition(%)

Wave1 Wave2 Wave2 Wave2 Wave2 Wave3 Wave3 Wave3 Wave3

North Central
Urban 217 206 5 211 2.76 201 0 201 7.37
Rural 577 576 7 583 -1.04 550 4 554 3.99
Total 794 782 12 794 0 751 4 755 4.91

North East
Urban 138 123 2 125 9.42 96 0 96 30.43
Rural 659 643 5 648 1.67 523 5 528 19.88
Total 797 766 7 773 3.01 619 5 624 21.71

North West
Urban 170 157 0 157 7.65 158 2 160 5.88
Rural 728 714 8 722 0.82 705 0 705 3.16
Total 898 871 8 879 2.12 863 2 865 3.67

South East
Urban 204 194 8 202 0.98 172 1 173 15.2
Rural 590 572 4 576 2.37 545 2 547 7.29
Total 794 766 12 778 2.02 717 3 720 9.32

South South
Urban 229 206 18 224 2.18 190 6 196 14.41
Rural 540 510 22 532 1.48 461 7 468 13.33
Total 769 716 40 756 1.69 651 13 664 13.65

South West
Urban 612 504 67 571 6.7 431 13 444 27.45
Rural 253 219 18 237 6.32 188 8 196 22.53
Total 865 723 85 808 6.59 619 21 640 26.01

Nigeria
Urban 1570 1390 100 1490 5.1 1248 22 1270 19.11
Rural 3347 3234 64 3298 1.46 2972 26 2998 10.43
Total 4917 4624 164 4788 2.62 4220 48 4268 13.2
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Table 11: FIES descriptive statistics - List of survey questions

FIES - GHS Questions

In the past seven days, how many days you or someone in your household had to :

(1) Rely on less preferred food?

(2) Limit the variety of food eaten?

(3) Limit the portion size at meal-times?

(4) Reduce number of meals eaten in a day?

(5) Restrict consumption by adults in order for small children to eat?

(6) Borrow food, or rely on help from a friend or relative?

(7) Have no food of any kind?

(8) Go at sleep hungry because there is not enough food?

(9) Go a whole day and night without eating?
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Table 12: Descriptive Statistics of main variables

Mean SD Med Min Max Obs.
(1) (2) (3) (4) (5) (6)

Household Characteristics

Household size

Number of adults 3.38 1.89 3 1 26 4041

Head is female 0.16 0.37 0 0 1 4041

Age of head 51.7 14.7 50 22 87 4041

Agricultural Production

GPS measured total land holding (ha) 1 1.52 0.53 0 26.5 1758

SR total cultivated land holding (ha) 8.4 219 0.98 0 104 1758

GPS measured plot area (ha) - average per hh 0.56 0.83 0.35 10−4 26.5 1758

SR cultivated plot area (ha)- average per hh 4.44 103 0.58 0 4800 1758

SR total crop production (kg) 4435 25591 1751 0 106 1758

SR Yields (kg/ha) 2369 2617 1436 202 14880 1758

SR Yields main crops (kg/ha) 2491 2788 1435 210 15104 1758

SR Yields maize (kg/ha) 1670 1805 1000 148 11752 777

Agricultural Practices

Number of cultivated plots per hh 2.08 1.18 2 1 11 1758

Number of cultivated crops per plots - average per hh 2.37 1.16 2 1 12 1758

Food Security

FIES -3.21 6.21 0.51 -57 0.7 3907

Food insufficiency 0.20 0.40 0 0 1 4055

HDDS 8.22 2.06 8 1 12 4041

Notes: Descriptive statistics are displayed for the panel sample including the three first waves of the GHS.
The mean and other mathematics are given for the three waves, the number of observations are the number
of households (the real number of observation being three times the one given). Household characteristics
outcomes are given for the whole sample. Agricultural production and practices are displayed for the
panel of households that cultivated at least one plot in each waves (the one used in the main regression
analysis), while the Food security outcomes for the panel sample for which we were able to build the
indicator for each wave. Please note that SR Yields have been treated to correct the outliers, winsorized
by the median.
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A.1.1 Figures

Figure 10: Monthly precipitation of long-term average

Notes : The Figure represent the long-term average (1981-2019) of the monthly precipitation
over Nigeria. Red lines draw the 95th percentile of the long-term rainfall distribution, while the
blue line the 50th percentile and the green line the 5th percentile.
Sources : authors’ elaboration on CHIRPS
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Figure 11: Monthly precipitation of long-term average per geopolitical zones

Notes : The Figure represent the long-term average (1981-2019) of the monthly precipitation
over the six geopolitical zones of Nigeria. Red lines draw the 95th percentile of the long-term
rainfall distribution, while the blue line the 50th percentile and the green line the 5th percentile.
Sources : authors’ elaboration on CHIRPS

Figure 12: Timeline of cropping season and survey rounds

Notes : The Figure gives the timeline of the cropping season and the post-planting and post-
harvest survey rounds.
Sources : authors’ elaboration on GHS data
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Figure 13: Main cultivated crops per geopolitical zones per GHS waves

Notes : The Figure plots the distribution of main cultivated crops per geopolitical zones of
Nigeria, for each GHS waves (wave 1 in blue, wave 2 in red, wave 3 in green and wave 4 in dark).
Sources : authors’ elaboration on GHS data
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A.2 Long-term changes in rainfall patterns and characteristics

Figure 14: Long-term trends of climate indicators - 1981-2019 long-term period

Notes : The Figure plots the annual (a) and long-rainy season trends (b) of precipitation amounts
(mm) during the long-term period 1981-2019, based on CHIRPS data. Bottom panels show
the significance of the trends at p < 0.05. Blue (+1) displays a significant increasing trends,
while red (-1) a significant decreasing one and 0 non significant changes.
Sources : author’s elaboration on CHIRPS data.
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Figure 15: Long-term trends of climate indicators - 1989-2019 long-term period

Notes : The Figure plots the annual (a) and long-rainy season trends (b) of precipitation amounts
(mm) during the long-term period 1989-2019, based on CHIRPS data. Bottom panels show
the significance of the trends at p < 0.05. Blue (+1) displays a significant increasing trends,
while red (-1) a significant decreasing one and 0 non significant changes.
Sources : author’s elaboration on CHIRPS data.
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Figure 16: Long-term trends of climate indicators (2) -1981-2019 long-term period

Notes : The Figure plots (a)R1+mm(b)R1+mm and (c) R20mm trends over the long-rainy
season (days), during the long-term period 1981-2019, based on CHIRPS data. Bottom
panels show the significance of the trends at p < 0.05. Blue (+1) displays a significant increasing
trends, while red (-1) a significant decreasing one and 0 non significant changes. R1+mm
indicator is the number of wet days (i.e the rains are strictly positive), R1-mm is the number of
dry days (i.e when the rains equal zero), and R20mm the number of heavy rains (i.e when rains
aver over 20mm). By construction, R1+mm and R1-mm account for the total period and are
symmetric.
Sources : author’s elaboration on CHIRPS data.
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Figure 17: Long-term trends of climate indicators (3) - 1981-2019 long-term period

Notes : The Figure plots (a)SDII (mm.day−1)(b)CWD and (c) CDD(days) trends over the
long-rainy season (days), during the long-term period 1981-2019, based on CHIRPS data.
Bottom panels show the significance of the trends at p < 0.05. Blue (+1) displays a significant
increasing trends, while red (-1) a significant decreasing one and 0 non significant changes.
SDII is the Simple Daily Intesity Index, CWD the Consecutive Wet day Index and CDD the
Consecutive Dry Day Index.
Sources : author’s elaboration on CHIRPS data.

61



A.3 Main Shock of interest

Figure 18: Spatial distribution of the number of dry rainy seasons - past years

Notes : The Figures plot the number of dry rainy season for each GHS village from the panel,
during the three decades over the thirty years period 1981-2010. Figure (a) plots the number
of dry rainy season from 1981 to 1990 (including), Figure (b) from 1991 to 2000, while Figure
(c) from 2001 to 2010. Dry years are defined according to the 1981-2010 long-term average.
Please note that the number of dry rainy season reach 5 for some GHS village, as the dummy is
constructed using the 10th percentile of the normal distribution of the rains (but this is scarce).
Sources : authors’ elaboration on CHIRPS and GHS data.
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Figure 19: Spatial distribution of the number of dry rainy seasons - past years

Notes : The Figures plot the number of dry rainy season for each GHS village from the panel,
comparing 4 time periods over the full long-term period from 1981 to 2019. This Figure makes
it possible to compare the intensity of dry spells, comparing the dry period of the 80s to the
2001 drought and the more recent years, used as contemporaneous short shocks in the first stage
analysis. Figure (a) plots the number of dry rainy season from 1981 to 1989 (including), Figure
(b) from 1990 to 2000, Figure (c) from 2001 to 2010, and Figure (d) from 2011 to 2019. Dry
years are defined according to the 1981-2019 long-term average. Please note that the length of
the 4 length periods vary in order to have the same number of years between Figure (a) and
Figure (d), which are the main shocks that we intend to compare in this Figure.
Sources : authors’ elaboration on CHIRPS and GHS data.
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