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Abstract

Since 2000, Kenya has experienced an increase in the frequency of droughts,
significantly affecting agriculture and driving labor force migration. This paper in-
vestigates strategic migration patterns among farmers and pastoralists in response
to repetitive droughts. I use fine-grained data that enables the capture of short-
distance migration and heterogeneity, combining satellite-based data on daily rain-
falls (CHIRPS) with exhaustive censuses from 1989,1999, and 2009. I use a two-way
fixed-effect model to exploit the spatial variation in drought frequency across 2,518
sub-locations, comparing their demographic growth according to the number of dry-
rainy seasons over each decade. First, I show that increased drought frequency trig-
gers out-migration, as one additional drought decreases demographic growth by 1.7
p.p, equivalent to a 1% population decline. This result is consistent within the [15;
65] age group, excluding other demographic effects and confirming migration as the
driving factor. The main contribution of this paper is the identification of different
migration strategies across livelihoods. Rural areas dominated by pastoral activities
experience significant out-migration, leading to a rural-rural shift from pastoral to
agriculture-oriented regions. Herders’ migration displays little heterogeneity, sug-
gesting the migration of entire households and consistent with migration as a last
resort. Agricultural rural areas are less vulnerable to drought and display significant
heterogeneity. The results show the migration of the most educated individuals in
the working age, while uneducated individuals are trapped in affected areas. This
paper highlights the importance of using detailed data to understand diverse migra-
tion strategies, thereby facilitating the implementation of effective policies.
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1 Introduction

Over the past decades, East Africa has been facing an increase in the frequency of
droughts, associated with a decrease in the agricultural season length and an increase
in dry conditions [Gebrechorkos et al., 2019], significantly affecting agricultural activities
and making adaptation necessary. Migration is a possible strategy for adaptation to cli-
mate shocks, which can act as a substitute for on-farm adaptation, but can also occur in
addition to on-farm strategies, as remittances relax local liquidity constraints and boost
local adaptation and innovation adoptions [Cattaneo et al., 2019a]. Migration might also
occur when local strategies have failed and be a last resort strategy. Eventually, it is a
costly option that might be impossible for liquidity-constrained households. Migration
can take a full range of forms, from rural-urban to rural-rural mobility, from temporal to
permanent reallocation, and can be a choice, or an option of last resort. The majority
of the Kenyan labor force relies on agricultural and pastoralist activities as their main
livelihoods, making them all the more vulnerable to climate shocks. The lack of infras-
tructure and facilities in the country, 2% of the cultivated areas being irrigated, - make
the occurrence of rainfall a crucial determinant of crop production and animal husbandry
[Bryan et al., 2010]. Understanding the characteristics of climate-induced migration in
rural settings at the local scale is critical to reducing vulnerability to climate events.

This paper investigates internal strategic migration patterns among farmers and pas-
toralists in response to the increase in drought frequency. It contributes to prior research
using fine-grained data that enables the capture of short-distance migration and hetero-
geneity. To analyze rainfall patterns over the 1983-2013 period, I use high-resolution
satellite-based data on daily rainfall and temperature, the CHIRPS and CHIRTS product
from the Climate Hazard Center (CHC) [Dinku et al., 2018]. Socio-economic variables are
built using three waves of exhaustive censuses from the Kenya National Bureau of Statis-
tics (KNBS) giving information at the individual level about gender, age, educational
level, and main economic activity. This study relies on a panel of 2518 sublocations, the
smallest administrative unit in Kenya, from 1989 to 2009. Migration is proxied by changes
in the decadal population growth rate (DPGR) over two decadal periods, 1989-1999 and
1999-2009. Restrictions of the DPGR to the [15,65] years old cohort and heterogeneity
across age brackets rule out any effects on fertility, as well as old-age and infant mortality.
I estimate a two-way fixed effects strategy exploiting the spatial variation in the increase
of drought repetition since 2000 across Kenyan sublocations. The country has been hit by
major dry shocks, with national coverage in 2000 and with more spatial variation in 2004
and 2007, which shows the increase in the frequency of dry conditions, especially in the
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center of the country. The increase in erratic rainfall and dry conditions are detrimen-
tal to rural households and make adaptation even more necessary. Using a two-period
difference-in-difference strategy with continuous treatment, I compare the demographic
growth of sublocations according to the number of dry rainy-season over each decadal
period. A heterogeneity analysis is conducted in order to determine the profile of mi-
grants across sublocation types. I build a demographic record of the migration across
socio-economic characteristics and look at the heterogeneity of the migration responses
according to the type and main livelihood of each sublocation.

First, this paper gives evidence of out-migration in response to repetitive droughts in
Kenya. An additional dry rainy season over a decade decreases the demographic growth
rate by 1.7 percentage points, which corresponds to a 6% reduction of the DPGR (or
a 1% population decline) compared to normal rainfall conditions. This result is consis-
tent within the [15; 65] age group, excluding other demographic effects and confirming
migration as the driving factor. This effect is mainly driven by the out-migration from
rural areas, especially those where pastoralism is the main economic activity, showing a
critical effect on animal husbandry activities. I find no significant results of the effects
of an additional flood during the main agricultural season, which shows the determinant
impact of droughts.

The main contribution of this paper is the heterogeneity, which identifies different
migration strategies across livelihoods. Overall, the heterogeneity analysis shows that mi-
grants are mainly young individuals of working age and with minimum education, as non-
educated individuals are trapped in treated sublocations. This heterogeneity is mainly
observed within agriculture-oriented rural sublocations, and different migrant profiles are
identified depending on the dominant livelihood of the area. Within rural areas dominated
by pastoralist activity, the results show little heterogeneity, which is in line with nomadic
livelihoods and the displacement of entire households or villages due to rainfall shortages.
This suggests that the increase in drought frequency accelerates and intensifies the short-
distance and rural-rural migration of herders in Kenya, consistent with migration being a
strategy of last resort. On the other hand, agriculture-oriented areas display high hetero-
geneity, as the out-migration is driven by young and skilled individuals and non-educated
individuals are trapped in affected rural areas, which is in line with individual migration
as a response to climate shocks and with an income diversification strategy. Finally, I also
find a structural change in the labor market in treated urban areas, as business owners
seem to fall into unemployment.
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The intensive margin analysis shows the critical effects of drought repetition and sug-
gests a rural-rural shift from pastoral to agriculture-oriented regions. The out-migration
increases when the number of droughts over a decade increases. The results from changing
the threshold intensity suggest that herders relocate into rural agriculture-oriented areas
with favorable rainfall conditions. I use the land-cover ESA Glob-Cover data to distin-
guish areas where croplands are dominant, a proxy for the intensity of agricultural activity,
and those where pastures prevail. The results show that the overall effects is driven by the
out-migration of mixed areas, containing both pastoral areas and croplands, showing that
the results are driven by pastoralist systems with diversified livelihoods. Overall, these
results suggest that the response to repetitive droughts in Kenya results in rural-rural
migration.

The findings of this paper are supported by a battery of robustness checks. The main
result is robust in controlling for average temperature, evapotranspiration, and tempera-
ture anomalies. It is also robust to the de Chaisemartin and d’Haultfœuille [2020] estima-
tor, to using a difference-in-difference relying on a binary treatment, testing for spurious
correlation such as spatial correlation and spatially dependent trends, to running spatial
and temporal randomization inference tests. I address additional threats to the identifica-
tion by testing for the common trend assumption and by correcting for the contamination
of the control group.

The major contributions of this paper are twofold. First, it gives evidence of small-
magnitude rural-rural movements as a response to repetitive droughts, mainly driven by
households involved in pastoralist systems. The paper relates to the climate-induced
migration literature using long-term and exhaustive information at the individual level,
which tackles the limitations of macro-oriented studies that estimate aggregate flows and
neglect intra-country heterogeneity. The results display relatively small magnitude effects,
hard to capture at a bigger scale, showing the necessity to use exhaustive and local demo-
graphic data to capture internal climate-induced migration. High-resolution samples have
an important comparative advantage giving enough power to detect the small magnitude
effects found. The second contribution is the heterogeneity analysis which identifies differ-
ent types of migrant profiles and forms of migration across livelihoods. To my knowledge,
it is the first study to build a demographic record of the migratory response to repetitive
droughts across four socio-economic characteristics simultaneously at the local scale.
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The remainder of the paper is structured as follows. Section 2 reviews the literature
and presents the contributions. Section 3 details the data used in the paper, and Section
4 the context as well as spatial and temporal changes in precipitation in Kenya. Section
5 presents the main empirical strategy. Section 6 lays out the main results, while Section
7 investigates the heterogeneity. Section 8 looks at the intensive margin of the results,
and Section 9 proposes a list of robustness checks and tests. Section 10 concludes.

2 Literature review and contributions

If migration is a response to climate change increasingly investigated in the literature,
there is still debate on the characteristics of the relationship, as the literature highlights
heterogeneity across the types of climate-induced adaptation. The assessment of the
causal effect of climate on economic outcomes depends on the definition of the event. The
response to natural disasters and short-term variations differ from the response to climate
variability, to slow-onset events, and to climate change in the longer-run [Dell et al., 2014;
Auffhammer et al., 2013]. The induced migration can take several forms as well, from
international to internal displacement, from rural-urban to rural-rural resettlement, and
from temporary to permanent movements. This paper is in line with the micro-oriented
literature, which looks at the effects of slow-onset events and identifies rural-rural move-
ments and heterogeneous migration.

This section first displays the literature on the response to fast-onset events. It then
describes the literature on longer-term changes, places this paper within this literature,
and gives its contribution.

2.1 Short-term events

Natural disasters and fast-onset events, such as landslides, hurricanes, or floods, trigger
temporary and short-distance migration of the labor force toward cities. Looking at ag-
gregated outcomes at the scale of several developing countries, Beine and Parsons [2015]
show that natural disasters spur migration to neighboring countries and increase internal
rural-urban migration, proxied by the rate of urbanization, in both poor and middle-
income economies.

This pattern is also observed by looking at case studies, such as in developed countries
with the case of the famous American Dust Bowls that occurred in the 1930s in Texas
and Kansas. If Hornbeck [2012] observes short-run population decreases at the county

5



level, interpreted as an-out migration towards California, the paper suffers from omitted
variables bias and reported issues. Long and Siu [2018] refute the exodus towards Califor-
nia, showing that the population decline was a consequence of pre-region characteristics
and a fall in the flow of in-migrants in these counties. It finds that land erosion led to
intra-county short-distance movements, linked to a decrease in agricultural productivity.
Lynham et al. [2017] looks at demographic and economic damages of the Hilo Tsunami
of 1960 on Hawaii Island and finds a civilian population decline explained by a decrease
in the number of employers and population moving away. Gray and Mueller [2012] fails
to find any effects of flooding in Bangladesh, but shows a strong effect of crop failures
associated with droughts on short-distance migration of low-income households. Findley
[1994], uses a small sample of household survey data to analyze the effects of the 1983-
1985 drought in Mali and blames famine as a potential driver for migration. The paper
finds that even if the global migration rate did not change, there was a massive migration
of women and children and a shift to short-cycle circulation. Famines linked to natural
disasters are also distress factors leading to temporary rural-urban mobility, followed by
return migration to the origin region, as happened in the case of the Irish Great Famine
[Gráda and O’Rourke, 1997].

2.2 Slow-onset events

In this paper, I mainly contribute to two strands of the literature. First, I contribute to
the literature that measures the effects of slow-onset events on the magnitude of migra-
tion, as I look at the effect of repetitive droughts over twenty years. The literature on
climate-induced migration identifies several types of migration. If macroeconomic studies
mainly focus on international and urbanization due to the nature of aggregated outcomes,
this paper is in line with case studies that are able to distinguish between rural-urban
and rural-rural movements.

2.2.1 International migration and urbanization rates

First, the macroeconomic-oriented literature looks at the impact of climate trends on
international migration using country-level panel data [Özden et al., 2011]. It displays
mixed evidence of climate-induced migration according to the dependence on the agricul-
tural sector [Cai et al., 2016; Feng et al., 2010], income distribution, and the destination
of the migrants. While Reuveny and Moore [2009] finds that slow environmental degrada-
tion plays a significant role in out-migration and Missirian and Schlenker [2017] in asylum
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applications towards the EU, Beine and Parsons [2015] fail to discern a direct impact on
international migration mainly due to the income shock. The paper argues that changes
in climate patterns do not only impact the incentives to migrate but also reduce wages
and consequently the capacity to finance a costly migration. It shows that in the poorest
countries, rainfall and temperature deviations weaken the ability to migrate, which is ev-
idence of the poverty trap story [Piguet et al., 2011]. The longer-term process of climate
change seems to affect individual credit constraints more than their incentives to migrate.

Another strand of macroeconomic studies focuses on urbanization to investigate ef-
fects on rural-urban internal migration. Barrios et al. [2006] use urbanization rates to
assess the long-term rural-urban migration caused by changes in average rainfall for 78
Sub-Saharan countries, compared to the rest of the developing world. They found larger
effects of the decrease in precipitation after decolonization, explained by more freedom in
legislation to move. Cattaneo and Peri [2016] display evidence of the poverty trap story
by finding more impact of temperature increases on urbanization rates in middle income
than in poor economies. Marchiori et al. [2012], use theoretical and empirical evidence
showing that migration occurs in two steps, first rural-urban and then international. The
paper finds that both temperature and rainfall anomalies increase internal and interna-
tional migrations as it leads to wage gaps, first between rural and urban areas, and then
in comparison to international wages, intensified by living condition deterioration within
cities due to population inflows. Looking deeper into the rural-urban migration, Hender-
son et al. [2017] compare different types of cities. They find that soil moisture deficiency
induces urbanization for cities with the capacity to integrate leaving farmers into the labor
force, being cities with manufacturing.

2.2.2 Internal movements

However, macro studies use aggregated migration flows and climate patterns, neglect
within-country heterogeneity, and miss country-specific responses with smaller-magnitude
effects, such as rural-rural displacements. If empirical case studies are fewer due to lack
of data, they disentangle migration types and heterogeneity and show that response to
slow-onset events is not limited to urbanization [Mueller et al., 2020]. Overcoming the
drawbacks of local and small sample size surveys, they use exhaustive population census
data [Joseph and Wodon, 2013; Strobl and Valfort, 2015; Dallmann and Millock, 2017;
Long and Siu, 2018; Thiede and Gray, 2017; Albert et al., 2021], historical archive records
[Hornbeck, 2012; Lynham et al., 2017], or panel survey [Dillon et al., 2011; Sedova and
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Kalkuhl, 2020] and pulled repeated cross-sections [Bertoli et al., 2021].

The literature displays mixed evidence, showing that climate-induced migration is
highly dependent on the context. Dallmann and Millock [2017] use two Indian censuses
(1991 and 2001) and find evidence of inter-district migration due to drought frequency
(based on the SPI), which is attenuated for districts with high irrigation rates. Mexican
migration to the US is higher in rain-fed agriculture communities which had lower rainfall
[Munshi, 2003] and with temperature shocks on crop yields [Feng et al., 2010]. Using
one census in Yemen Joseph and Wodon [2013] find that socio-economic and cost factors
affect much more migration than climate variability. In the Malian context, Defrance
et al. [2022] use administrative censuses as well and finds evidence of net outflows in
response to dry shocks driven from the SPEI Vicente-Serrano et al. [2010], which fades
in localities with more diversified crops. Strobl and Valfort [2015] instrument the net-
in-migration rate by the weather-predicted determinants to study the effect of climate
migration on local labor markets and find negative effects on the employment probability
of the non-migrants in the destination areas. Looking at road density, they find higher
results for regions less favorable to capital mobility.

2.2.3 Heterogeneity and Contributions

This paper also relates to the micro-oriented literature that examines the heterogeneity
of climate-induced migration.

First, it looks at the heterogeneity of the response according to sublocation character-
istics, such as density. I also distinguish rural areas where agriculture prevails from those
where pastoralism prevails, to identify the different types of migration. McGuirk and
Nunn [2020] focuses on pastoralism migration and shows that droughts in western Africa
modify the timing of pastoral groups’ migration, which triggers conflict with sedentary
farmers. This paper is in line with a rural-rural response, as it gives evidence of the
out-migration of herders, who seem to move towards rural areas with normal rainfall con-
ditions in the case of Kenya.

Eventually, the main contribution of this paper is to understand precisely who are
the migrants. Sedova and Kalkuhl [2020] investigate the characteristics of the migrants
according to their level of schooling and dependence on agriculture using a panel survey
in India. The paper corroborates the urbanization response in the case of India, as it
shows that weather anomalies push people into faraway cities and more prosperous states
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but decreases rural-rural movements. The heterogeneity shows that climate migrants are
likely from the lower end of the skill distribution and households highly dependent on
agricultural production. If my paper is in line with the agricultural channel showing that
individuals with the age of working and involved in agricultural activity out-migrate, it
shows that it is mainly triggered by the educated population.

This paper contributes to the literature through a multi-dimensional heterogeneity
analysis and improves the understanding of the heterogeneous migration responses in
different contexts [Cattaneo et al., 2019b]. To my knowledge, it is the first analysis
to look at the climate-induced response through so many socio-economic characteristics
simultaneously and comprehensively. It takes advantage of exhaustive censuses giving
precise information on age, gender, economic activity, and education to capture small-size
effects. It helps improve the understanding of heterogeneous migration responses.
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3 Data

This paper matches socio-economic data from exhaustive censuses provided by the KNBS
1 and temperature and rainfall data from the CHIRPS and CHIRTS products of the CHC
2.

3.1 Climate Data

This paper uses the CHIRPS product from the CHC, which combines a satellite-based
rainfall product (CHIRP 3) with station observations data. It gives a good spatial (0.05
lat/long) and temporal (daily, decadal, and monthly) resolution for historical (1981-2019)
mean maximum and minimum precipitations. It has been validated over Eastern Africa
and assessed as the best satellite-based product Dinku et al. [2018]. For temperature, we
use the CHIRTS product, also from the CHC, which also combines satellite and station-
based estimates of maximal, minimal, and mean temperature (Tmax, Tmin and Tmean),
with the same spatial and temporal resolution as CHIRPS [Funk et al., 2019].

3.2 Population Data

The demographic variables come from three waves of exhaustive censuses conducted each
decade in Kenya. Since independence, five complete censuses have been conducted in
Kenya, in August 1969, August/September 1979, August/September 1989, August 1999,
and August 2009. As the magnetic reels on which the 1969 and 1979 censuses were stored
got wet and part of the data were lost, only three censuses can be used in the present
study: 1989, 1999, and 2009 4. Table 14 in Section B.1 compares the number of observa-
tions in each province between the data files and the census reports per Province for the
1989, and 1999 and 2009 censuses. This comparison gives the rate of missing information
from the censuses. A discussion in the Appendix Section B.1 is made about the quality
and reliability of the data, and as justifies the exclusion of the Nyanza and North-Eastern
Provinces from the analysis, which is mainly due to data inconsistency in 1989 and 1999.

The population universe of the 1989,1999 and 2009 Kenyan censuses is composed of all
persons living in the national territory. They are exhaustive, both at the housing and in-

1Kenya National Bureau of Statistics
2Climate Hazard Center
3Climate Hazards Group Infrared Precipitation
4I am highly grateful to Lara Tobin for providing me with the censuses [Tobin, 2017], which were

granted by KNBS.
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dividual levels, giving information about the relationship with the head of the household,
the age, the gender, the tribe/nationality (only in 1989), the marital status, the previ-
ous economic activity, the years of schooling and the type of the sublocation (whether
it is rural or urban area). There are five scales of administrative boundaries in Kenya:
Provinces, Districts, Divisions Locations, and Sublocations. Aside from provinces, they
all have been reorganized and redrawn over the years. The analysis at the sublocation
level has required precise work of matching sublocations over the years, as some changes
were geometrically chaotic. Explanation and descriptive statistics of this work can be
found in Appendix Section B.2.

Precise information about migration is only available at the district levels in the cen-
suses. As districts are large areas, looking at the effects at the scale of districts does not
capture local effects and might be biased by omitted variables and concomitance. The
main analysis of this paper focuses on intra-district population variation and proxies the
migration using population growth outcomes. Net migration rates over each 10 year-
period ([1989,1999] and [1999,2009]) are proxied by the Decadal Population Growth Rate
(DPGR) at the sublocation level. More formally, the DPGR can be written as follows :

DPGRi,[t−10,t] =
∆popi,[t−10,t]

popt−10

=
popi,t − popi,t−10

popt−10

Where i indicates the sublocality and t the last year of each census (1999 for the first
census, 2009 for the second one). As the DPGR captures fertility and mortality as well
5, I define the DPGR[15,65], which is the DPGR of the population aged between [15,65]
years old at the beginning of the decade and between [25,75] years old, as I follow the
cohort. The DPGR[15,65] rules out any effects on fertility, old age, and infant mortality,
and shows that the effects are mainly driven by migration. As one goal of this paper
is to investigate the heterogeneity of migration, the heterogeneity analysis according to
age brackets and vulnerable population groups intends to verify as well that the effect is
mainly driven by migration.

The censuses make it possible to distinguish sublocations according to their types. I
use the 1989 classification given in the administrative census to class sublocations as rural
and urban. A main comparative advantage of the 2009 census is that it gives information

5The DPGR is the sum of the new births, deaths, and the net migration: DPGRi,[t−10,t] =∑t
T=t−10 BirthT−

∑t
T=t−10 DeathT+

∑t
T=t−10 InmigrationT−OutmigrationT

popt−10
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on whether individuals are involved in farming or pastoralism activity. In this paper,
a rural sublocation is defined as highly pastoralist if the total share of the population
working in pastoralism in 2009 is amongst the highest, and scarcely pastoralist if it is
amongst the lowest 6. Thus, within rural areas, I create the High Pastoralism and Low
Pastoralism classes.

4 Context and descriptive statistics

4.1 Setting

4.1.1 Climatology

The study focuses on Kenya, ranging from equatorial (West), tropical (East Coast),
semi-arid and arid (North), and temperate (inland) climatology. Rainfall patterns are
influenced by heterogeneous and multiple local factors, including topography, land sur-
face, monsoon systems, Rift Valley lakes, and large-scale factors such as global forcing
mechanisms (El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD))7

[Endris et al., 2013; Hoerling et al., 2006]. Kenya is part of the eastern Horn of Africa, sep-
arated from the rest of the continent by high elevations and the basin of the Turkana Lake.

Figure 1: Long-term average of monthly precipitation

Notes: The Figures represent the long-term average of the monthly precipitation (1983-2013)
(mm) over Kenya. Red lines plot the 95th percentile of rainfall distribution, blue lines the 50th
percentile, and green lines the 5th percentile.
Sources: Author’s elaboration on CHIRPS data.

6It is possible to enumerate the pastoralists in the 2009 census thanks to a question about the type
of employer of each working individual. Individuals that are self pastoralist and pastoralist employed
are classified as pastoralists. When looking at the distribution of the share of the working population
involved in pastoralism, we consider a sublocation with high pastoralism if the share is above the 60th
decile, and with low pastoralism, if it is under the 40th decile.

7The El Nino-Southern Oscillation (ENSO) is a recurring climate pattern defined by the change in
temperature gradients across the central and eastern tropical Pacific Ocean, while the Indian Ocean
Dipole (IOD) across the equatorial Indian Ocean.
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Lying across the equator, Kenya experiences a bimodal seasonal pattern, as shown in
Figure 1. The two wet seasons are the long rains and the short rains and are separated
by two other seasons with little rainfall. The long rainy season is the primary agricultural
season, and extends from March to June (MAMJ), with a peak centered around March/-
May, and is modulated by local factors rather than global scale ones [Omondi et al.,
2013]. The short-rainy season occurs over October-December (OND). As the short rains
are influenced by the ENSO and IOD global factors [Nicholson, 2015; Liebmann et al.,
2014], they are less reliable than the MAMJ season and less determinant for agricultural
systems. Eventually, January/February (JF) and July/August/September (JAS) are the
driest months of the year, with low precipitations and high temperatures. Figure 21 in
Section C.1 displays the seasonal patterns across provinces. If some heterogeneity is ob-
served, all provinces show a bimodal pattern, and I define the MAMJ as the long-rainy
season overall in the country.

As local rains are the dominant source of water for Kenyan agriculture (limited ground-
water and reservoir storage), the variation and long-term evolution of the long rains
MAMJ are a major cause of concern.

Figure 2 plots the spatial variation of the long-term average of annual rains (Figure
2a) and the long-rainy season (MAMJ) cumulative precipitations (Figure 2b), over the
[1983-2013] period. In this paper, the long-term period refers to the 30 years [1983-2013].
Annual precipitation is lower than in other parts of equatorial Africa, as the long-term
average of annual rainfall is only 593 mm, and only 268 mm over MAMJ 8. Figure 2
shows high heterogeneity, as the highest rainfall amount is registered in the western part
of the country (up to 2000 mm per year), while the minimum amount of precipitation
is observed in the North East, at the frontier with Ethiopia/Somalia (less than 150mm)
Figure 2. Figure 22 in Section C.1 plots the long-term mean of rainfall characteristics
during the long-rainy season, including the number of wet days (R1plus), the length of
the wet and dry spells (CWD and CDD), and the daily intensity of rainfalls (SDII). It
shows that the Center and Northern areas display shorter agricultural seasons, with fewer
wet days but more intense daily rains.

8For instance, in Tanzania, the long-term average of annual precipitations is 976mm over 1981-2016
Gebrechorkos et al. [2019]
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Figure 2: Spatial variation of rainfall long-term average

(a) Annual precipitation (mm) (b) MAMJ precipitation (mm)

Notes: Figures plot the spatial distribution of the long-term annual average (a) and the
long-term average of the long-rainy season of cumulative precipitations over [1983-2013].
Sources: Author’s elaboration on CHIRPS data .

4.1.2 Land-cover and livelihoods

Beyond the heterogeneity in climate contexts, Kenya is an interesting setting because it
has diversified agroecological zones and rural livelihood systems. Figure 3a plots the land
cover classes, indicates the main urban centers, and shows that Kenya contains mainly
pastoral areas. Overall, 27% of the country is made of croplands, 61% of pastures, 9%
of bare areas, 2% of waterbodies, and 0.1 % of urban areas. Amongst croplands, the
majority are rainfed as only 2% of cultivated areas are equipped for irrigation [Bryan
et al., 2010]. Within pastoral areas, 10% are forests, 33% grasslands, 7% shrubs, and 50%
herbaceous categories 9.

The main cultivated food crops in Kenya are maize (up to 60% of arable lands),
sorghum, and sweet potatoes. The inlands, including the center of the country, the south
of the Rift Valley, as well as the region of the Capital Nairobi, and the snow-covered
Mount Kenya, are the most important agricultural regions thanks to a tropical savanna

9Percentages are computed using the ESA GlobCover data
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climate, less warm than the rest of the country. Tea and coffee are also cultivated, in par-
ticular in the center of Kenya, which has an ideal amount of precipitations and volcanic
red soils. A cut flower industry has developed in the south of the Rift Valley as well,
well-known for its exportation of roses. The West of the country borders Lake Victoria
and is divided between Western and Nyanza provinces. Thanks to an equatorial climate,
and being the most humid part of the country, it is also mainly agricultural, made of
croplands and several major cities. The southeast coastal zone of the country has tropical
and humid weather also prone to agriculture, with important food crops being cassava,
sweet potatoes, and maize.

Eventually, 80% of Kenya is covered by arid and semi-arid lands (ASALs), in the
northern and eastern parts of the country. Figures 2 and 3a show that the northwest is
the aridest region with desert landscapes, highly hot and dry, while the rest of the North
has a warm semi-arid climate. Figures 21 22 in Section C.1 show that the ASALs have
shorter and less intense agricultural seasons. Within the ASALs, pastoralism is the main
source of livelihood, which accounts for 90% of employment and more than 95% of house-
hold incomes [Nyariki and Amwata, 2019]. It is an economic activity based on livestock
production systems, fitting with dryland environments where resources are scarce and
unstable. In particular, it is well adapted to generate income in the ASALs despite the
instability of precipitations, and despite the fact that water is available over short spans
and unpredictable concentrations.

Pastoral systems in Kenya are complex and diverse, and there is not a unique defi-
nition of pastoralism in the country [Hesse and MacGregor, 2006]. Each specific area is
characterized by the varied composition of the herds, and the organization of the eco-
nomic system, according to its ecological characteristics and available resources. The
Maasai pastoralists from the south of the Rift Valley are sedentary and rely on diver-
sified livelihood strategies, not only husbandry. The proximity of riverine areas enables
herders to practice more restricted movements. The herds are mainly composed of cattle
and sheep, with few camels which reflects the favorable ecological conditions. The drier
northern part of the country is characterized by different pastoral systems, mainly no-
madic and transhumant pastoralism, as resources are scarce and rainfall unstable [WFP,
2018]. To maintain access to water and grazing resources, herders are forced to move
regularly [Campbell and Axinn, 1980]. The herds are mainly camels and goats, rather
than sheep and cattle. If the different pastoral systems display diversified characteristics,
most of them rely on herd mobility and migration as a strategy to cope with climate
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Figure 3: Spatial variation of land cover and main economic activity

(a) Land Cover
(b) Main economic activity

Notes: Figure (a) plots the land cover classes across croplands, pastures, bare areas, inlands,
and main cities. Figure (b) plots the sublocations types, and classes of rural sublocations
according to whether pastoralism is a main economic activity. Each dot corresponds to the
sublocation centroid.
Sources: Author’s elaboration on ESA Globcover and KNBS data.

events [Hesse and MacGregor, 2006].

Thus, the majority of the labor force is involved in agricultural activity including both
farming and husbandry. Figure 3b displays the classification of each sublocation according
to their type and the dominant livelihood strategy, using the information provided in the
2009 census. It plots the urban sublocations, and within rural sublocations distinguishes
those for which pastoralism is the main economic activity from those where it is not.
Figure 3 shows the correlation between the dummy indicating pastoralist activity and the
presence of grasslands and pastures 10.

4.1.3 Long-term rainfall trends

Section C.2 describes the long-term trends of rainfall characteristics, and their statistical
significance, over Kenya across several indicators. It shows that the semi-arid and arid

10The dummy for high pastoralism correlates at 46∗∗∗% with the presence of grasslands
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regions (ASALS) are facing more erratic rainy seasons, which are becoming shorter with
more intense daily rains. In the long run, patterns display significant downward trends
in the number of rainy days and the length of wet spells during the long-rainy season,
associated with higher intensity of wet days. This shows a decrease in the length of the
agricultural period and an increase in extreme events, in a region highly vulnerable be-
cause dependent on the agricultural sector. This suggests evidence that the increase in
the recurrence of droughts since 2000 in Kenya, which is exploited in this paper, is a
consequence of climate change in the long run.

4.2 Temporal and spatial variation

4.2.1 Population and migration

Figure 4: Spatial variation of the DPGR across periods

(a) DPGR [1989-
1999]

(b) DPGR [1999-
2009]

(c) Long Differences

Notes: Figures (a) and (b) plot the spatial distribution of the DPGR over (a) period 1
[1989,1999] and (b) period 2 [1999,2009]. Figure (c) shows the spatial distribution of the
long-difference of the DPGR in percentage points.

The Kenyan population is highly dependent on agricultural and livestock income, thus
vulnerable to climate variability. Over the 1991-2007 period, 0.72% of the total popula-
tion was an inter-district migrant, on average (Section G). Kenya faces high population
growth, and Central and Western provinces are the most populated and dense areas (aside
from Nairobi) (Tables 19 20).

Figure 4 maps the spatial and temporal variations of the population growth, as it plots
the sublocation DPGR over both periods of the analysis, and the DPGR long-difference. It
shows increasing trends of the DPGR in the Eastern part of the country, while attenuated
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and decreasing trends in the center and western areas. Figure4 shows spatially clustered
population growth trends, which will be discussed in Section 9.3. Figure 27 and 26 in
Section C.3 plot spatial patterns of population size and density for each sublocation.

4.2.2 Temporal and spatial variation of rainfall

Kenya has a large interannual and intraseasonal variability of total precipitation and ex-
tremes [Nicholson, 2015]. Extreme events, mainly droughts, and floods, are recurrent,
occurring once every three to four years [Herrero et al., 2010] and generally attributed to
the ENSO, even though the causes of droughts in Eastern Africa are hardly understood
by the climatological literature [Lyon and DeWitt, 2012; Nicholson, 2017].

When looking at longer time scales, long rains amount have decreased in East Africa,
mainly due to a recent increasing trend in the sea-surface temperatures (SSTs) in the
Indian Ocean. The change in rainfall characteristics over the long run explained in the
previous Section 4.1.3, shows the decreasing trends of the length of the long-rainy season.
This dramatic decline in precipitations since the 1980s is linked with a more abrupt de-
crease in rainfall during the rainy season since 2000 [Lyon and DeWitt, 2012]. During the
1983-2013 period, the most important droughts that Kenya faced occurred in 1983,1993,
1999-2000, 2004-2005, and 2009-2011 [Nicholson, 2015], impacting more and more people
[Herrero et al., 2010], especially in the vulnerable ASALs 11. Since 2000, dry events have
alternated with excessive rainfall as well, but have been shown to have less economic im-
pacts than droughts [Mogaka et al., 2006].

Figure 28 from Section C.4 displays the time series of CHIRPS annual precipitation
departures 12 aggregated over the country. It shows high interannual variability and shows
that droughts were particularly severe in 2000 and 2004, with rainfall decreasing up to
25% in comparison to the long-term mean. Figure 28 shows evidence of climate variabil-
ity, displaying the alternation of dry and wet conditions, as the 2000 and 2009 droughts
are both preceded by excessive rainfall, up to 60% above the mean.

Since 2000, droughts have occurred mainly during the boreal summer (rainy season
MAMJ) and have become more frequent and severe, longer and more intense, with persis-
tence though several rainy seasons [Nicholson, 2015, 2017]. Figure 29 plots times series of
seasonal anomalies, and displays high intraseasonal variability. It shows that the decline

11Arid and semi-arid region
12rainfall departures are percentage above or below 1983-2013 long-term mean
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in precipitation in Kenya is mainly borne by the decrease during the rainy season MAMJ,
while the increase in excessive rains is mainly borne by an increase in wet conditions dur-
ing the short rainy season OND. As this paper focuses on the effect of drought repetition,
the main analysis focuses on the occurrence of rainfall over the long-rainy season MAMJ.

Figure 6 shows both the spatial and temporal distribution of rainfall over the 1983-
2013 period. For each year, it plots the departure from the long-term mean during the
long rainy season across the country. It displays the main droughts and floods, their
pattern and persistence across years, as well as the areas the most impacted. Figure 6
identifies 1984, 1992-1993, 1999-2001, 2005-2006, and 2010-2011 dry periods and displays
their spatial distribution. If droughts are regionally clustered, some impacting most parts
of the country, their severity and extent over the rainy seasons differ across Kenya. The
1983-1984 drought’s greatest deficits were over the North of the North-Eastern region, the
center of Eastern Kenya, and the length of the Rift Valley, as precipitation were 50−75%

below the long-term mean. The dry period seems to extend over two years, with a com-
plete recovery of the rains in 1984. Figure 6 shows the 2000 drought which impacted the
majority of the country, with partial recovery in 2001 and the spatial variation of the
2004-2005 and 2007 droughts. As an intra-district variation of the rainfall shortages is
observed, it underlines the advantage of doing the main analysis at the sublocation level.
Figure 6 displays as well the occurrence of excessive rains over MAMJ, which are more
distributed over the years and less intense than droughts. Figure 30 in Section C.4 dis-
plays the same map for the short-rainy season and shows that, if critical droughts mainly
occur over MAMJ, severe floods are mainly born by the OND season.

This paper looks at the effects of the increase in the repetition of droughts during
the long-rainy season since 2000 on demographic movements. For each year, I construct a
dummy based on the long-term mean of rainfall during MAMJ for each sublocation, which
equals 1 for dry rainy seasons, and 0 otherwise. We define a season as dry if the cumulative
rains over the MAMJ are lower than the 10th percentile of each sublocation cumulative
MAMJ rains over the 1983-2013 period. The independent variable used in the analysis
is the number of dry rainy seasons, based on the previous definition, over each decadal
period. More formally, the number of dry years is written as follows: zi,t =

∑10
j=1 1i,t−j,

such as:

1i,t−j =

{
1 if

∑June
m=MarchRaini,m,t < 10th percentile of Raini,[1983−2013]

0 otherwise
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Figure 5: Number of dry and wet sublocations across years - 10th decile

Notes: This Figure plots in red the number of sublocations for which the rainy season for a
specific year is dry, meaning the cumulative rains are below the 10th decile of the sublocation
distribution. Accordingly, it plots in blue the number of sublocations for which the rainy
season is wet. For instance, around 1000 sublocations are wet in 1988, while 2000 sublocations
are dry in 2000.
Sources: Author’s elaboration on CHIRPS and KNBS data.

Figure 5 plots for each year the total number of sublocations for which the dummy 1i,t

equals 1. Again, we observe that 2000 and 1984 were national droughts, while 1993, 2004,
and 2007-2008 droughts impacted unevenly the country. The Figure shows the increase
in the occurrence of droughts since 2000. I exploit the spatial variation of the increase in
droughts since 2000 by comparing the effects of the number of droughts over 1989-1999
to the effects of the number of droughts over 1999-2009. If Figure 5 shows that 2009 was
particularly intense, its effects on Kenyan demography will not be analyzed due to the
availability of population data. Figure 5 plots also the number of sublocations for the
excessively wet years, defined as the cumulative rains being over the 90th percentile of
the distribution. As shown in Figure 29, Figure 5 shows that floods are more distributed
and less severe over the period, and display no increasing trends of floods born by the
MAMJ season.
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Figure 6: Rainfall percent departures of the long-rainy season (MAMJ) from 1983-2013 mean

Notes: The Figure plots the percent departure from the long-term mean of the main rainy season (1983-2013) for each pixel.
Sources : Author’s elaboration on CHIRPS data.
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5 Empirical strategy

5.1 Main estimation

The main empirical strategy of this paper exploits the time and spatial variation of rainfall
in Kenya, as described in Section 4.2.2. It looks at the effects of the number of dry years
over a decade on the migration, proxied by the DPGR, for each sublocation over two time
periods. I compare the evolution of the DPGR over [1989,1999] and [1999,2009], according
to the number of dry rainy seasons per decade. I use a two-way fixed-effect regression,
with both sublocation and period fixed effects, on a panel of sublocations. This estimation
relies on a Difference-in-Difference (DiD) comparison with heterogeneous treatment, as
there are treated sublocations at both periods, with various treatment intensities (see
Section 9.1 for further discussion). More formally, the empirical strategy can be written
as follows :

DPGRi,t = α0 + α1densi,t0 + α2zi,t + α3densi,t0 × zi,t + γi + γt + ϵi,t (1)

With zi,t =
∑10

j=1 1i,t−j, the number of years considered as dry over the decade (def-
inition based on the long-rainy season, cf Section 4.2.2 ). γi and γt are sublocation and
time-fixed effects adjusting for spatial and period-specific confounders. t0 indicates the
first year of analysis (1989), and densi,t0 is the baseline density of the sublocation, cen-
tered around the median in 1989 (190 p.km2 ) 13. The independent variable is interacted
with the initial density of each sublocation (centered around the median) to investigate
the heterogeneity of the effect according to the density distribution and control for the
type of sublocation (Figure 26 maps the density distribution). Using density as a proxy
for urbanization levels, this accounts for the first distinction between rural and more ur-
banized areas.

Equation 1 is a two-way fixed effects model, capturing the heterogeneity according to
the baseline population density of the sublocation, using interaction terms. The estimator
of interest, α2, gives the effect of an additional dry rainy season over the period, for a
fictive sublocation of median density.

13This value is way above the national mean given by WB numbers, around 100 p.km2. This is because
the means and medians here are calculated over sublocations and not for all the country.
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5.2 Identification assumption

The key assumption of a DiD is that the demographic growth of the treated areas would
have evolved as the demographic growth of control areas in the absence of repetitive
droughts. As I can not test that treated and control sublocations would have followed the
same time trends, I test in Section 9.2 the common trend assumption using pre-treatment
data. A main issue in this test is that the identification relies on two periods only, the
[1989-1999] and the [1999-2009], making the pre-treatment data hard to observe. KNBS
provided the 1979 census as well, but the census was damaged and part of the data was
completely lost 14. Section 9.2 relies on the hypothesis that the damage was random, and
uses a sample of the census to show that the common trend assumption holds in this paper.

However, the fact that pre-treatment data are parallel is neither a necessary nor a
sufficient condition for the identification.
First, past trends can be identical but the control group may be affected by a group-
specific shock during the period of the treatment. Omitted variables bias is exacerbated
in the presence of spatial dependency. Thus, other threats to the identification are spu-
rious correlations linked to the spatial dependency of the dependent and independent
variables. This is discussed in Section 9.3, which shows that the result is robust to cor-
recting for spatial correlation of the shocks, as well as spatially dependent trends.
Second, the contamination of the control group raises concern about the fact that the
trends of the control group would be the ones that would have prevailed in absence of
dry events in the treated sublocations. The contamination of the control group is directly
linked to the nature of the dependent variable. As the results show out-migration from
the treated sublocations, individuals migrate somewhere within the control group, which
is de facto contaminated by the treatment group. Section 9.4 discusses this issue and
proposes a robustness check to test for this threat.

Another concern is that the paper proxies migration by demographic growth. A way
to show that the results are driven by migration effects is to restrict the sample to the
[15,65] years old cohort. This rules out any effects from fertility, and mortality of vulner-
able groups of the population, which is reinforced by the heterogeneity analysis per age
bracket.

Eventually, a threat to the heterogeneity analysis would be that economic status and
14magnetic reels of the censuses were stored but got wet and part of the data was lost, including the

reels of Nyanza province in 1989 which explains the discrepancies in the data
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education are endogenous to rainfall shocks. Section 7.2 looks at the effects according to
the skill distributions of the [20,70] cohort, which means that I look at the demographic
growth of individuals aged between [20,70] in 1989 and between [30,80] in 1989. This rules
out any effects of early-life climate shock on school participation. Indeed, I exclude all
potential students and de facto any endogenous effect on educational attainment, which
is highly correlated to climate shocks [Randell and Gray, 2016]. The endogeneity remains
for the economic activity, and as discussed in Section 7.3, I can not rule out the fact that
the results suggest changes in the labor market rather than pure migration effects.

6 Main results

6.1 Drought intensity

This section gives the main result of the paper estimated from equation 1. Table 1 dis-
plays the effects of the number of dry rainy seasons on the DPGR, including period and
sublocation fixed effects. Columns (1) to (3) show the effects overall of Kenya, while
Column (4) focuses on the urban sample and Column (5) on the rural sample. Column
(6) gives the DiD estimator for rural sublocations where pastoralism is low, and Column
(7) for rural sublocations where pastoralism is the predominant livelihood. Section 3.2
explains how urban, rural, low, and high pastoralism are built. Columns (2) to (6) include
the interaction with the 1989 density centered around the median of each sublocation 15,
while Column (3) controls for decadal mean temperature and potential evapotranspira-
tion (PET) for each sublocation over MAMJ.

The results show that one additional dry agricultural season over a decade decreases
the DPGR by 1.7 percentage points (p.p), which corresponds to a 6% reduction of the
DPGR. An average sublocation loses 110 individuals due to an additional dry year, which
corresponds to losing 1.3% of its population over a decade 16. Column (2) shows that
the effect is significantly attenuated with the density, which is in line with the hypothesis
that the effect fades out in highly dense areas, a proxy for being more urbanized.

15For all the regressions, demographic outcomes such as the DPGR, RDPGR, and density are winsorized
at the 5% threshold to deal with extreme values

16On average, a sublocation is made of 6443 persons in 1989. As the mean DPGR over 1989-1999 is
28%, without any drought, an average sublocation size in 1999 should be 8247 (6443× (1+0.28)). Being
hit by one additional drought over a decade implies a decrease of the DPGR by 1.7 p.p, which results in
population size in 1999 of 8137 (6443× (1 + 0.28− 0.017)). On average, a sublocation hit by a drought
loses 110 persons over a decade, which means that the population size is reduced by 1.3%.
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Table 1: Effects of the number of dry rainy season on the DPGR

All Kenya Urban Rural Low Pastoralism High Pastoralism

(1) (2) (3) (4) (5) (6) (7)

Nb of dry years -1.727*** -1.920*** -1.769*** -0.230 -3.016*** -1.342 -4.153***
[0.549] [0.568] [0.603] [1.519] [0.680] [1.044] [1.132]

× density 0.00116* 0.000874 0.000292 0.00738*** 0.00537** 0.0143***
[0.000676] [0.000669] [0.000520] [0.00162] [0.00210] [0.00414]

Period FE Yes Yes Yes Yes Yes Yes Yes
Sublocation FE Yes Yes Yes Yes Yes Yes Yes
Controls No No Yes No No No No

N 5036 5036 5036 756 4280 1626 1800
R2 0.674 0.674 0.676 0.746 0.661 0.703 0.613
Mean DPGR (%) 27.75 27.75 27.75 31.55 27.08 20.09 34.15

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Columns (1) to (3) display
results for all Kenya, Column (4) focuses on urban sublocations, Column (5) (6) and (7) on rural sublocations. Column (6)
focuses on rural sublocations where agriculture is the main activity, while Column (7) those where it is pastoralism. Each
regressions includes year and sublocation fixed effects. Variable number of dry years gives the number of years with dry rainy
seasons over each decade. The variable density is the density in 1989 for each observation, centered around the median of
the 1989 density (194 p./km2). Column (3) controls for the mean temperature and Potential Evapotranspiration (PET) over
MAMJ over the period for each sublocation. Nyanza and North Eastern provinces are excluded due to missing variables.
Each demographic variable is winsorized at the 5% threshold, including the DPGR and the centered density.

Column (5) shows no effect for urban areas. The main effect is mainly driven by the
comparison within rural areas, as one additional drought reduces the DPGR by 3 p.p,
which corresponds to an 11% decrease (Column (5)). Within rural areas, the decrease of
the DPGR seems to be concentrated in areas where pastoralism activity is high (Column
(7)), where the DPGR decreases by 4.15 p.p (12% decrease). Column (3) shows the ro-
bustness of the results when controlling for decadal mean temperature and PET over the
rainy season 17.

Table 2 gives the same results as Table 1, using as dependent variable the DPGR[15,65]

for all individuals aged from 15 to 65 years old, which represents 46% of the total popu-
lation. The DPGR[15,65] follows the age cohort as it captures the demographic growth of
individuals aged between 15 to 65 years old at t-10, and aged between 25 to 75 years old
at t 18. The analysis on the DPGR[15, 65] rules out any effects on fertility, infant, and
old age mortality and shows that the effect is mainly driven by migration. An additional

17As the result is robust to controlling to mean temperature and PET, the rest of the paper no longer
includes these controls, to avoid multicollinearity issues with the main independent variable number of
dry years.

18More formally: DPGR[15,65[,i,[t−10,t] =
∆pop[15,65[,i,[t−10,t]

pop[15,65[,t−10
=

pop[25,75[,i,t−pop(15,65[,i,t−10

pop[15,65[,t−10
.
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Table 2: Effects of the number of dry rainy season on the DPGR

All Kenya Urban Rural Low Pastoralism High Pastoralism

[15,65] (1) (2) (3) (4) (5)

Number of dry years -1.788*** -1.168 -2.465*** -1.849*** -3.034***
[0.396] [1.107] [0.480] [0.697] [0.793]

Number of dry years × density 0.000952* 0.000182 0.00575*** 0.00434*** 0.00969***
[0.000517] [0.000366] [0.00114] [0.00144] [0.00274]

Period FE Yes Yes Yes Yes Yes
Sublocation FE Yes Yes Yes Yes Yes

N 5036 756 4280 1626 1800
R2 0.603 0.703 0.578 0.592 0.561
Mean DPGR (%) -11.74 -7.534 -12.48 -15.16 -9.709

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North
Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.

dry rainy season decreases the DPGR[15,65] by 1.78 p.p, which is, again, mainly driven
by rural areas (Column (3)), in particular those where pastoralism is the main economic
activity (Column (5)). We observe a 1.8 p.p decrease within rural sublocation where
pastoralism is low (Column (4)), which can be interpreted as a proxy for high intensity of
agricultural activity. This result suggests that within agricultural sublocations, one addi-
tional drought implies the migration of individuals aged between 16-65 years old, which
corresponds to individuals in their working age.

These results show that the majority of the effect overall in Kenya is driven by in-
duced migration within rural areas, and more specifically pastoralist sublocations. This
is in favor of an agricultural channel for induced climate migration and is in line with
the literature. Based on the livelihoods of nomadic pastoralists, this suggests a story of
short-distance movement, rural-rural migration, of entire households/villages depending
on husbandry activity [McGuirk and Nunn, 2020]. Migration within agricultural sublo-
cations occurs only for individuals in the age of working, which is in line with individual
migration. Section 7 investigates the heterogeneity of the migration across sublocation
characteristics to better understand these different forms of migration.
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6.2 Flood intensity

Table 3 shows no significant effect of the number of highly wet long-rainy seasons on the
DPGR, both overall Kenya and across sublocation types. As floods are mainly born by
short-rainy season OND, Table 26 in Section F.4 replicates the analysis on the number of
wet short-rainy season and still, show no effect of an additional flood occurring over OND.
This shows that the repetition of dry conditions plays a major role in internal migration
in Kenya. In Section D.1, I attempt to look at the effect of being hit by both droughts
and floods. The results suggest that being hit by at least one drought attenuates the
out-migration in response to increasing droughts.

Table 3: Effects of the number of wet rainy season on the DPGR

All Kenya Urban Rural Low Pastoralism High Pastoralism

(1) (2) (3) (4) (5)
(6)

Number of wet years 0.841 0.454 0.811 1.423 1.564
[0.520] [1.201] [0.606] [0.912] [1.259]

Number of wet years × density 0.000182 0.000149 0.00153 -0.000956 0.00186
[0.000240] [0.000244] [0.00220] [0.00254] [0.00735]

Period FE Yes Yes Yes Yes Yes
Yes
Sublocation FE Yes Yes Yes Yes Yes
Yes

N 5036 756 4280 1626 1800
R2 0.673 0.746 0.657 0.703 0.605
Mean DPGR (%) 27.75 31.55 27.08 20.09 34.15

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and
North Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.
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7 Heterogeneity

In this section, I investigate the heterogeneity of migration across individuals’ socioeco-
nomic characteristics. A demographic account is built using the Relative Decadal Popula-
tion Growth Rate (RDPGR) 19, which gives the contribution of each population subgroup
to the total migration effect. Let’s call C = (c1, ...ci, cn) an exact partition of the total
population (for instance females and males). The effect on the DPGR of the total popu-
lation is equal to the sum of the effect on the RDGR for each subgroup of the partition
(βDPGR,tot =

∑n
i=1 βRDPGR,ci).

Section 7.1 gives the heterogeneity of the migration across gender and age brackets,
Section 7.2 according to the educational level (defined according to past schooling atten-
dance of adults), and Section 7.3 according to the economic activity.

7.1 Age and Gender

7.1.1 Gender

Table 4 displays the effect of one additional dry rainy season on the RDPGR of males
(odd Columns) and females (even Columns). It gives the heterogeneity across gender and
location. Columns (1) and (2) give the results overall Kenya, Columns (3) to (8) within
rural sublocations, Columns (5) and (6) within rural sublocations where pastoralism is
low while Columns (7) and (8) where it is high.

An additional dry year decreases the RDPGR of males by 1 p.p, which corresponds
to a 7% reduction. It decreases the RDPGR of females by 0.9 p.p, which corresponds to
a 6.5% reduction. As males and females are an exact partition of the total population,
the effect on the DPGR of the total population (Table 1 Column (2)) is exactly the sum
of the effect on males and females: −1.920 = −1.013 − 0.907. This implies that the
migration is slightly more masculine as 53% of migrants are males, a result which holds
in rural sublocations. This is attenuated within pastoralist rural areas, which display less
heterogeneity, as the migration is 51% masculine.

Table 22 in Section E.1 reproduces the same heterogeneity analysis across gender
following the cohort of individuals aged from 15 to 65 years old as in Table 2. Again,

19RDPGR rate is: RDPGRc,i,[t−10,t] =
∆popc,i,[t−10,t]

popt−10
=

popc,i,t−popc,i,t−10

popt−10
, while DPGRc,i,[t−10,t] =

∆popc,i,[t−10,t]

popc,t−10
=

popc,i,t−popc,i,t−10

popc,t−10
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this allows us to rule out effects on fertility, infant, and old-age mortality. The results
on the RDPGR[15−65] display similar patterns as in Table 4. As in Table 2, the effect is
significant in rural areas with low pastoralism, in line with the hypothesis of the working
population.

Table 4: Effects of the number of dry rainy season across gender and location

Sample All Kenya Rural

All Low Pastoralism High Pastoralism

RDPGR Males Females Males Females Males Females Males Females

(1) (2) (3) (4) (5) (6) (7) (8)

Nb of dry years -1.013*** -0.907*** -1.606*** -1.411*** -0.750 -0.591 -2.131*** -2.022***
[0.289] [0.287] [0.345] [0.344] [0.522] [0.533] [0.575] [0.572]

× density 0.000457 0.000701** 0.00350*** 0.00388*** 0.00283*** 0.00254** 0.00648*** 0.00787***
[0.000338] [0.000341] [0.000824] [0.000824] [0.00107] [0.00107] [0.00206] [0.00213]

Period FE Yes Yes Yes Yes Yes Yes Yes Yes
Sublocation FE Yes Yes Yes Yes Yes Yes Yes Yes
N 5036 5036 4280 4280 1626 1626 1800 1800
R2 0.663 0.677 0.652 0.661 0.694 0.703 0.608 0.612
Mean RDGR (%) 13.86 13.89 13.57 13.51 10.04 10.04 17.16 16.99
Share (%) 48.82 51.18 48.59 51.41 48.4 51.6 48.85 51.15

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North Eastern provinces
are excluded. Each demographic variable is winsorized at the 5% threshold.

7.1.2 Age brackets

This section displays the heterogeneity analysis according to age brackets and location
types. It follows the different cohorts of individuals aged between 0-69 years old at the
beginning of the period (t-10) and aged between 10-79 years old at the end (t). Figure 7
breaks down the effect on the RDPGR of each 10-year bracket within [0-69], each bracket
following cohorts. Table 23 in section E.1 gives the effect on all the [0-69] cohort, which
is the sum of each regression dot per location type. Figure 7a plots the effect for all the
sublocations and rural sublocations, and Figure 7b distinguishes between low pastoralist
and high pastoralist rural sublocations. The size of the effect on each RDPGR de facto
depends on the size of each bracket: for instance, the [0-9] age brackets represent 32% of
the total population while the [60-69] 2.9 %, as displayed in Figure 7a.

Overall Kenya, Figure 7 shows no effect on the RDPGR of children under 10 years
old, which suggests no effect of droughts on infant mortality. The Figure shows an effect
on those under 10 years old within rural high pastoralist areas. This can be interpreted as
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Figure 7: Effect of the number of dry rainy seasons across age brackets and
location

(a) All Kenya (b) Rural areas

Notes: Figure (a) plots the main result of the number across age brackets of dry years overall
in Kenya and within rural sublocations. Figure (b) plots the same coefficient, focusing on rural
sublocations where pastoralism is the main agricultural activity and where it is not.
Sources: Author’s elaboration on CHIRPS and KNBS data.

evidence of some infant mortality, as well as homogeneous migration across age brackets,
in line with the migration of entire herder households.

Figure 7 shows that the effect is mainly driven by the migration of young individuals
in the age of working ( [10-19] and [20-29] brackets), across all types of sublocation types.
This is especially the case in low pastoralist areas, as the effect is only significant for
individuals aged between [20-29], while it is more homogeneous across age brackets in
high pastoralist areas (Figure 7b). This result is in line with an out-migration of the
young working population within agricultural areas.

7.2 Education

This section looks at the effect of the number of dry rainy seasons across the skill distri-
bution of adults. It follows the cohort of individuals aged between [21,69] years to omit
potential students and endogeneity linked to school attendance. Figure 8 distinguishes
individuals that never attended schooling, that at least have attended primary school 20,

20attended or completed primary education
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Figure 8: Effect of the number of dry rainy seasons across educational level and
location ([21,69])

(a) All Kenya (b) Rural areas

Notes: Figure (a) plots the main result of the number of dry years across the educational
level of individuals aged between 21 and 70 years in the first year of the decade. Figure (b)
plots the same coefficient, focusing on rural sublocations where pastoralism is the main
agricultural activity and where it is not.
Sources: Author’s elaboration on CHIRPS and KNBS data.

and those who have at least attended secondary education 21.

The migration is mainly driven by adults that are from the middle of the skill distri-
bution, and who have at least attended primary education. This is consistent across all
types of locations. Figure8 shows a reverse effect of individuals that never went to school,
which can be interpreted as a proxy for the illiterate population. Figure 8a shows that
people from the low end of the skill distribution significantly stay in affected areas. An
additional dry rainy season implies an increase of the RDPGR of the illiterate population
by 0.3 p.p, both within rural and urban sublocations. Within rural sublocations, this
result holds only within low pastoralist sublocations but is no longer significant within
sublocations where pastoralism prevails.

This result is in line with two mechanisms that are illustrated in the literature. First,
it can be in line with a poverty trap story. If illiteracy is considered as a proxy for richness,
this result can be explained by the fact that individuals are too credit-constrained to fi-

21attended or completed secondary education. This includes individuals that went to university. As
they only represent 0.72% of the population, this subgroup could not be distinguished
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nance a costly migration, even for short-distance movements. A second explanation would
be that individuals that never attended school will have fewer professional opportunities
in other places, be less able to diversify their economic activity, and have no interest to
adapt by migrating. This result is mainly driven by agricultural areas, which supports the
mechanism of the migration of the most skilled young individual within the household,
as an adaptative response to climate variability.

Figure 31 in section E.2 displays the results on education according to age brackets,
to verify that these results are not driven by any age effects.

7.3 Economic Activity

Figure 9: Effect of the number of dry rainy seasons across economic activity and
location

(a) All Kenya (b) Rural areas

Notes: Figure (a) plots the main result of the number of dry years across the economic
activity of individuals in the age of working in the first year of the decade. Figure (b) plots the
same coefficient, focusing on rural sublocations where pastoralism is the main agricultural
activity and where it is not.
Sources: Author’s elaboration on CHIRPS and KNBS data.

Information on the economic activity of individuals allows me to understand the ef-
fect of droughts according to the type of livelihoods, and on structural transformation
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patterns and labor allocation. Figure 9 displays the demographic record of the migra-
tion according to economic activity. It compares the effect of the number of droughts on
the individuals working 22 to those not working. Please note that the total effect on All
in the age of working equals the sum of the effect on those Working and Not Working (all).

Figure 9 shows that the majority of the effect on the population of working age is
driven by a drop in the working population. Within rural areas, this is especially the case
in high pastoralist sublocations in line with an agricultural channel 23.

As the RDPGR is an indirect measure for migration, we can not rule out the possibil-
ity that Figure 9 translates an effect of climate variability on labor allocation rather than
migration. An important result from Figure 9 is the effect that appears in urban areas.
In line with previous results, the effect on the total population of working age in cities is
null. However, an additional drought decreases the RDPGR of the working population by
4.6 p.p while it increases the RDPGR of individuals not working by 4 p.p, within urban
sublocations. Rather than evidence of out-migration, this equilibrium suggests a change
in the labor allocation within cities as a consequence of droughts. This suggests that
in urban areas, business owners lose their job to become unemployed because of climate
variability. This story is strengthened by the results in Figure 32 from section E.3, which
breaks down the Not working (all) variable into subcategories and shows a significant
effect of droughts on the increase in the share of people seeking work in urban areas.

As the results in rural areas are not balanced, we argue that it suggests evidence of
the out-migration of business owners involved in agricultural practices, in line with an
agricultural channel. This section displays evidence of a change in the labor allocation
in urban sublocation, as business owners seem to lose their job and fall in unemployment
due to climate variability.

22individuals working embraces those working for a pay/profit, those working for their own business
and/or family holding.

23As we can not directly identify farming and herding as economic activities, we consider the working
population within rural areas as a proxy for agricultural activity. Please note that within the working
population in rural areas, 32% work for a profit while 63% work for their own business/family holding
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8 Intensive Margin

8.1 Droughts intensity

This section explores the intensive margin of the result according to the number of dry
years occurring over each period. Figures 14a and 14b plot the spatial variation of the
number of droughts for each period. Few sublocations were hit by more than 2 droughts
within the first period. Being hit by 2 or 3 droughts occurs mainly in the second period,
which corresponds to the sublocations hit by droughts in 2000, 2004, and 2007 as illus-
trated in Figure 5.

Figure 10 plots the statistical difference between being hit by 1, 2, and 3 droughts
over the period, across location types. Overall, the effect increases when the number
of droughts increases. Being hit by one drought decreases the DPGR by 3 p.p, while
being hit by three droughts decreases the DPRG by 9.5 p.p, in comparison to having
zero droughts over the period. Figure 10b shows that the effect on rural areas where
pastoralism prevails is mainly driven by sublocations that have been hit by 2 droughts.

Figure 10: Intensive margin - Effect of the number of dry years on the DPGR

(a) All Kenya (b) Rural areas

Notes: Figure (a) plots the main result according to the number of dry years overall in Kenya
and within rural sublocations. Figure (b) plots the same coefficient, focusing on rural
sublocations where pastoralism is the main agricultural activity and where it is not.
Sources: Author’s elaboration on CHIRPS and KNBS data.
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8.2 Threshold intensity

In the main result, the number of droughts over each decade is based on a dummy vari-
able, which specifies for each sublocation whether a year is dry if the cumulative rains are
below the 10th percentile of the sublocation distribution over 1983-2013. In this section,
I investigate an intensive margin of the intensity of the rainfall shock, as I look at other
percentiles to define the rainfall shock. Figure 11 replicates Figure 5 for the 20th, 30th
and 40th deciles. For each decile, it gives the number of sublocation for which the dummy
variable is dry per year. It gives as well the number of sublocations for which a particular
year corresponds to excessive rains, i.e for which the cumulative rains exceed the 80th,
70th, and 60th deciles of the 1983-2013 distribution.

Figure 11: Number of dry and wet sublocations across years and deciles

(a) 10th decile (b) 20th decile

(c) 30th decile (d) 40th decile

Notes: These Figures in red are the number of sublocations for which the rainy season is dry
and wet across years, for four different decile thresholds.

Figure 12 plots the DiD estimation for each regression when changing the percentile
to define the rainfall shock, across each sublocation type. Effects on the 10th percentile
correspond to the main results from Table 1. Figure 12a distinguishes the effects on the
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DPGR for all sublocations and rural ones. It shows an attenuation of the effect when
increasing the thresholds, which shows that the effect is alleviated when the drought in-
tensity reduces. Within rural areas where pastoralism prevails (Figure 12b), the decrease
of the DPGR is still high up to the 20th decile and then reduces as the threshold increases.

Figure 13 replicates the same analysis for excessive rains. Effects on the 90th decile
correspond to the main results from Table 3. The results show that when the treatment is
defined based on the 85th decile, the number of wet rainy seasons increases the DPGR by
1.3 p.p. This result holds up to a treatment based on the 60th decile. This suggests that
moderate rainfalls attract individuals and that the effect no longer holds when normal
conditions are reached (55th decile), and is not significant for excessive rains either (90th
decile). As this effect is mainly driven by rural areas (no effect within urban sublocations),
this suggests a rural-rural migration, individuals leaving dry rural-areas for rural areas
more humid. Figure 13b shows that this attraction effect is mainly borne by sublocations
where agriculture is the main livelihood strategy, and pastoralism is not predominant.

Figure 12: Intensive margin - Effect of the number of dry years on the DPGR

(a) All Kenya (b) Rural areas

Notes: Figure (a) plots the main result of changing the thresholds for being treated. Figure
(b) plots the same coefficient, focusing on rural sublocations where pastoralism is the main
agricultural activity and where it is not.
Sources: Author’s elaboration on CHIRPS and KNBS data.
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Figure 13: Intensive margin - Effect of the number of wet years on the DPGR

(a) All Kenya (b) Rural areas

Notes: Figure (a) plots the effect of the number of wet years on the DPGR changing the
thresholds for being treated. Figure (b) plots the same coefficient, focusing on rural
sublocations where pastoralism is the main agricultural activity and where it is not.
Sources: Author’s elaboration on CHIRPS and KNBS data.

8.3 Land Cover and Agricultural activity

Table 5 replicates the main analysis according to a land-use classification of sublocations,
based on the ESA GlobCover data, as illustrated in Figure 3a. The land cover outcomes
are computed from satellite images dated 2009. GlobCover is an ESA initiative in part-
nership with JRC, EEA, FAO, UNEP, GOFC-GOLD, and IGBP which provides land
cover maps using input observations from the 300m MERIS sensor.

If 27% of the territory is made of croplands, 51% of sublocations are mainly composed
of croplands and 46% of pastures, as sublocation size within cropland regions are smaller.
Cropland areas include irrigated, rainfed, and natural croplands 24, and are a proxy for
agricultural activity. Pastoral areas encompass forest, grasslands, shrubs, and herbaceous
25, and are more in line with husbandry activities.

Table 5 Columns (1) and (2) look at the effects of the number of droughts within ar-
eas where cropland is the main land-cover, while Columns (3) and (4) where it is mainly
pastoral areas. It shows no effect within cropland regions, and that the overall effects are

24Unfortunately, most of the croplands are classified as natural croplands, and it is impossible to
distinguish any effect between rainfed and irrigated croplands

25accordingly, grasslands is the dominant category
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mainly driven by a decrease in the DPGR within pastoral areas 26. This result is in line
with the fact that the out-migration is triggered by herders. Column (2) interacts the
independent variable with a dummy indicating the presence of pastures and shows that
an additional dry year decreases the DPGR by 2 p.p within mixed areas in comparison
to those where croplands are the only land-cover. Column (4) replicates this interaction
and shows that within pastoral areas, the effect is significantly driven by mixed areas as
well, which corresponds to pastoral areas with the presence of croplands.

Table 5: Effects of the number of dry rainy season on the DPGR across land cover
categories

Cropland areas Pastoral areas

(1) (2) (3) (4)

Number of dry years -1.148 -0.106 -2.165** 3.251
[0.714] [0.721] [0.954] [2.484]

Number of dry years × Pasture presence -2.054***
[0.762]

Number of dry years × Cropland presence -5.567**
[2.580]

Period FE Yes Yes Yes Yes
Sublocation FE Yes Yes Yes Yes

N 2594 2594 2304 2304
R2 0.649 0.650 0.685 0.685
Mean DPGR (%) 28.38 28.38 26.42 26.42

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p <
0.01. Nyanza and North Eastern provinces are excluded. Each demographic variable is
winsorized at the 5% threshold.

Section 9.1.1identifies that the treated areas are located in the Western and the Central
provinces mainly agricultural, and the South of the Rift Valley is made of relatively
sedentary herders. The results are driven by mixed areas, containing both pastoral areas
and croplands, this suggests that the out-migration applies to herders within the Rift
Valley, depending both on livestock and agricultural outcomes, and with less nomadic
livelihoods. This suggests that repetitive droughts change the livelihoods of relatively
sedentarised pastoralist, coping with climate events by migrating towards agriculture-
oriented rural areas, and maybe changing their main economic activity.

26Please note that the interaction between the independent variable and the classification dummy is
not significant
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9 Robustness checks

9.1 Binary treatment and de Chaisemartin and d’Haultfœuille

[2020]

9.1.1 Binary treatment

The main estimation of this paper relies on a two-period comparison of the number of
droughts per sublocations. The Two-Way Fixed Effects (TWFE) estimator is driven
by changes in the demographic growth of switchers, which are sublocations that change
treatment status, in comparison to those that do not change status 27. The treatment
is heterogeneous, as three groups can be distinguished: Group 1 gathers sublocations for
which the treatment increases, Group 2 for which it decreases, and Group 3 for which
it remains stable between the two periods. Group 1 and Group 2 are sublocations that
switch treatment status and who drive the main result.

However, there might be a discrepancy between the actual treatment and Groups 1,
2, and 3. As a year is defined as dry if the cumulative rains are below the 10th percentile
of a 30-year period (1983-2013), each sublocation is de facto hit by three droughts over
1983-2013. By definition, a dry year every 10 years is not a shock, but a natural decadal
drought. Let’s consider some examples showing that Groups 1, 2, and 3 might be bad
predictors for treatment. A sublocation hit in 1983, 1993, and 2009 (Figure 5) belongs
to Group 2, as it switches treatment: 1 drought in period 1 [1989-1998] and 0 in period
2 [1999-2008]. However, as the three droughts are spaced out over at least ten years,
their occurrence does not illustrate any increase in climate variability in the area but a
normal variation in rains. This sublocation is wrongly attributed to a treatment group.
Accordingly, a sublocation for which the dry years occur in 1984, 2000, and 2012 belongs
to Group 1 and is wrongly allocated to a treatment group.

This section proposes another identification strategy that corrects this misallocation
of treatment and control groups. I use a binary treatment which accounts for the increase
in the occurrence of dry rainy seasons since 2000. As Figures 5 and 6 show, the second
period has been hit by a national drought in 2000 (the El-Nino event) and two other
shocks in 2004 and 2007-2008 that impacted the country unevenly. I define a treatment
dummy Ds such as 28:

27The setting of this paper verifies the existence of stable groups in the DiD Assumption 10 from de
Chaisemartin and d’Haultfœuille [2020]

28I exclude from the analysis sublocations that have been impacted both in 1993 and 2000. As the
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Di =


1 if sublocation i was hit by at least 2 droughts in period 2

(2000 and 2004 and/or 2007/2008) and no more than one in period 1 (in 1993)
0 if sublocation i has either known a drought in 1993, either 2000, or none
. if sublocation i has been hit both in 1993 and 2000

The empirical strategy can be formally written as follows :

DPGRi,t =
∆popi,[t−10,t]

popt−10

= α0 + α1Di + α2Pt + α3Di × Pt + γi + ϵi,t (2)

Where Di is the treatment dummy, Pt a dummy for the period, and γi sublocation
fixed effects.

Figure 14: Number of dry rainy seasons across periods and DiD groups

(a) Period 1 [1989-
1998]

(b) Period 2 [1999-
2008]

(c) DiD Groups

Notes: Figures (a) and (b) map the number of dry rainy seasons per period for each
sublocation, each dot being the centroid of a sublocation. Figure (c) shows the DiD groups.

Figure 14 maps the number of dry rainy seasons over the two periods and identifies
the treated and control sublocations. Treated sublocations are clustered, located in the
Western and Central provinces, as well as the center of the Rift Valley. The South of
the Western province is highly urban, with high-quality lands, with no clear decreasing
pattern of the DPGR (Figure 4 ). This is not the case for the Central and Rift Valley,

duration between the two droughts is smaller than 10 years, this represents an anomaly from the rain
distribution. However, we can not capture the effect of the repetition of these two droughts as they
straddle two censuses
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with hard geographic conditions, a high share of pastoralism (3b) and decreasing DPGR
trends. As treated sublocation are clustered, Section 9.3.1 adjusts standard errors for
both spatial and serial auto-correlation.

Table 6: Balance Table - Double Difference with Binary Treatment - Descriptive
Statistics

Period 1 Period 2 Within Within
[1999-1989] [2009-1999] Control Treated

Control Treated Diff Control Treated Diff

N Mean N Mean (4-2) Mean Mean (7-6) (6-2) (7-4)
/(SD) /(SD) /(p.value) /(SD) /(SD) /(p.value) /(p.value) /(p.value)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

DPGR 1148 29.05 706 23.88 -5.17 31.6 23.24 -8.36 2.56 -0.63

(27.16) (23.27) (0) (25.17) (21.39) (0) (0.02) (0.59)

p.a 1148 2.37 706 2 -0.36 2.6 1.97 -0.62 0.23 -0.03

(2.05) (1.76) (0) (1.86 ) (1.65) (0) (0) (0.74)

Pop(t) 1148 6237.85 706 6018.51 -219.34 8273.21 7651.45 -621.76 2035.36 1632.94

(6905.35) (4647) (0.41) (10430.32) (6971.89) (0.12) (0) (0)

Dens.(t) 1148 743.27 706 560.71 -182.57 479.56 542.52 62.95 -263.71 -18.19

(1859.59) (978.39) (0.01) (1570.48) (778.45) (0.25) (0) (0.7)

Notes: Standard errors in parentheses, p-values in brackets. ∗p<0.1; ∗∗p<5e-02; ∗∗∗p<1e-02. Outcomes descriptive statistics
of sub locations during both 1999-1989 and 2009-1999 periods,for sublocations in the control and treated groups. Outcomes are
: the population size and the density at the initial year of the period ( Pop(t) and Density(t)),the Ratio giving the percentage
evolution of the population (DPGR, in %) and the per annum growth rate (p.a, in %).

Balance Table 6 compares the changes in the demographic growth between treated and
control sublocations. It displays also the size of each group, with 706 sublocations being
treated and 1148 being in the control group. On average, the increase in the DPGR is
higher for the control group than for the treated one, for which the DPGR is quite stable
(Column (9) vs (10)). For control units, the DPGR trend is 3.19 p.p higher than for
treated units (Column (9)-(10) or (8)-(5) 29, and is mainly explained by the fact that the
population growth of the treated has less accelerated than the one of the control group.
In both periods, the p.value correctly rejects the null hypothesis, that both sublocation

29This is equivalent to the DiD coefficient, α3 from 2
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groups have similar DPGR distribution, the difference being higher in the second period.
The same observations are made for the per annum population growth (p.a). The table
displays changes for the average population and density at the beginning of each period
(in 1989 and 1999).

Table 7 displays the results of the binary treatment from equation 2 and shows that
the main result is robust to using a binary treatment. The treatment decreases the DPGR
by 3.19 p.p, which is mainly driven by rural sublocations, where pastoralism is the main
economic activity. Table 24 in Section F.1 gives the same results for the DPGR[15,56].The
binary treatment analysis is not affected by the bias of negative weights, as discussed in
the next Section 9.1.2.

Table 7: Effects of the increase in droughts on the DPGR - Binary treatment

All Kenya Urban Rural Low Pastoralism High Pastoralism

(1) (2) (3) (4) (5)

Dummy treatment × Period -3.189** -0.439 -3.549*** -0.646 -8.479***
[1.275] [3.484] [1.368] [1.732] [2.829]

Dummy Period 2.556*** -0.209 2.919*** 0.488 6.991***
[0.949] [2.499] [1.022] [1.385] [1.781]

Sublocation FE Yes Yes Yes Yes Yes

N 3708 436 3272 1248 1316
R2 0.667 0.701 0.663 0.727 0.606
Size Control Group 1148 133 1015 336 460
Size Treatment Group 706 85 621 288 198
Mean DPGR Control 30.33 30.89 30.25 22.62 36.07
Mean DPGR Treated 23.56 23.72 23.54 20.07 29.20

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and
North Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.

9.1.2 de Chaisemartin and d’Haultfœuille [2020]

The main analysis of this paper uses a two-period Difference-in-Difference setting with
non-binary treatment, to estimate the effect of the number of droughts on the DPGR.
Recent literature shows that under heterogeneous treatment, the ATT is a weighted sum
of different ATTs with weights that may be negative [de Chaisemartin and d’Haultfœuille,
2020]. The negative weights are an issue when the treatment effect is heterogeneous be-
tween groups over time, as one could have the treatment coefficient in those regressions
as negative while the true average treatment effect is positive. In this setting, the treat-
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ment is heterogeneous over time as the control Group 3 is compared to two groups of
sublocations switching treatment status, Group 1 for which the treatment increases, and
Group 2 for which it decreases. The binary treatment from the previous Section 9.1.1 is
a setting with homogeneous treatment and is not affected by negative weights, and its
DiD estimator is not biased. In this section, I use the de Chaisemartin and d’Haultfœuille
[2020] estimator which deals with the issue of negative weights in a heterogeneous and
non-binary treatment effect.

Table 8: Effects of the number of dry rainy season de Chaisemartin and
d’Haultfœuille [2020]

Sample Sample 1 Sample 2

TWFE dCDH TWFE dCDH

(1) (2) (3) (4)

Number of dry years -1.132* 0.339 -2.65*** -3.356***
[0.639] [1.984] [0.644] [0.619]

Sublocation FE Yes Yes Yes Yes
Period FE Yes Yes Yes Yes

N 4,682 4,682 3708 3708

Notes: Standard errors clustered at the sublocation level, ∗p <
0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Column (1) and (2) give the results
on the sample comparing Group 1 and Group 3, excluding Group
3 (all sublocations for which the treatment decreases). Column
(2) and (3) display the results on the sample comparing Group A
and Group B, according to the binary treatment defined in Sec-
tion 9.1.1. Columns (1) and (3) give the TWFE estimator, while
Columns (2) and (4) give the de Chaisemartin and d’Haultfœuille
[2020] estimator.

Table 8 displays the effects of the non-binary treatment (i.e the number of droughts)
for the TWFE estimation and the dCDH estimator30. Using the fuzzy did command
and following the procedure from de Chaisemartin et al. [2019], sublocations where the
number of droughts decreased are excluded from the analysis (Group 2) 31. Columns (1)
and (2) display the results when comparing Group 1 and Group 3, for which the stable
assumption holds 32. Column (1) shows that, when excluding Group 2 from the analysis,

30also called the time-corrected Wald ratio (Wald-TC) which relies on common trends assumptions
within subgroups of units sharing the same treatment at the first date

31As the setting of this paper has only two periods, it is not possible to correct weights for sublocations
for which the treatment decreases.

32between the two periods, there are sublocations for which the treatment is stable, i.e the number of
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being hit by an additional drought decreases the DPGR by 1.1 p.p , which is significant
at the 5% level. The dCDH estimator is positive and non-significant (Column 2), and the
STATA command showed that the two estimators are not significantly different. However,
as discussed in the previous Section 9.1.1, the comparison between Group 1 and Group 2
is not an exact predictor of abnormal rainfall. Columns (4-6) replicate the same exercise
comparing sublocations for which Di = 1 (Group A) to those for which Di = 0 (Group
B), as plotted in Figure 14c. Column (3) shows that, in this sample, being hit by one
additional drought decreases the DPGR by 2 p.p, which is significant at the 5% level.
The dCDH estimator is larger, as an additional drought decreases the DPGR by 3.3 p.p,
and is also significant at the 5% level. The two estimators are not significantly different.

9.2 Common trend assumption

The key assumption of the DiD strategy is that the dependent variable would follow the
same time trends in the absence of droughts both in treated and control groups. To test
for the common trends assumption, one can observe the pre-treatment data and the evo-
lution of the DPGR before the two periods.

However, the main estimation of this paper relies on a two-period DiD and does not
include pre-treatment data. This is mainly because the 1979 administrative data was
damaged when magnetic reels got wet. To test for common trend assumption, I will con-
sider in this section that the damages were random and did not affect the treated and
control groups differently. Another issue that arises when using the 1979 census is that
administrative frontiers have changed compared to the ones in 1989, and I have built a
panel of sublocation starting only in 1989. Thus, I restrict this analysis to sublocations for
which administrative frontiers were unchanged between 1979 and 1989, which I assume to
be evenly distributed across treated and control groups. I exclude the Nyanza and North
Eastern provinces as in the main analysis.

Eventually, I have a panel of 668 sublocations from 1979-2009 and for which I build
the DPGR over three periods. As part of the data has been damaged, the 1979 cen-
sus only gives a subsample of individuals for each sublocation, and the DPGR[1979,1989]

displays very high and unrealistic numbers. As I am only interested in looking at the
difference in pre-treatment trends between treated and control sublocations, I divide

droughts does not change, Assumption 10 from de Chaisemartin and d’Haultfœuille [2020] : it is Group
3
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theDPGR[1979,1989] by 100 to look at averages across groups in Figure 1533. Table 25
in Appendix F.2 shows that the main results over 1989-2009 are robust when restricting
the sample to the 668 sublocations used in this section to test for parallel trends in pre-
treatment observations.

Figure 15: Linear trends of the DPGR across DiD groups - three periods restricted
sample

Notes: This Figure plots the linear trends of the DPGR across periods, averaged overt
treated, and control groups defined in the binary treatment Section 9.1.1.

Figure 15 plots the linear trends of the DPGR across the three periods [1979,1989],
[1989-1999], and [1999,2009], and distinguishes between treated (Group A) and control
sublocations (Group B). For each period, it plots the DPGR averaged over each group,
with no control nor fixed effects. Figure 15 shows almost parallel trends between the
[1979,1989] and [1989,1999] periods, suggesting that the treated and control sublocations
follow a similar pattern of demographic growth. However, with so many data discrepan-
cies and hypotheses made on the 1979 data, the test is only indicative and has to be read
carefully 34.

Following Table 7, Figure 15 shows that the DiD estimators are driven by a deceleration
of the demographic growth for treated sublocations, in comparison to control sublocations.

33I divided by 100 to have coherent numbers. Besides, following the main analysis, I winsorize the
DPGR[1979,1989] at the 5% level

34A potential improvement of the test would be to randomly extract the same percentage of missing
data in the 1989 and 2009 censuses
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9.3 Spurious correlation

9.3.1 Spatial correlation

Figure 16: Distance to the nearest sublocation

Notes: This Figure gives the distribution of the distance between each sublocation and its
closest sublocation, giving insights into how far the sublocations are located from each other.
In red plots the mean distance (6.3km) (the maximum distance is up to 68 km).
Sources: Author’s elaboration on KNBS data

The main result has two sources of spatial correlation, for both the rainfall shocks and
the migration, as shown in Figures 14 and 4. This section tests for spatial correlation
among sublocations that fall within different distances of each other. It accounts for the
spatial pattern by using Conley [1999] standard errors.

Figure 16 gives the distribution of the distance to the nearest sublocation, showing
that on average a sublocation is located at 6 kilometers of its closest sublocations 35.
Standard errors are re-estimated with a spatial HAC correction following the method
developed by Conley [1999], using the Stata command introduced by Colella et al. [2019].
Table 9 shows the stability of the significance of the main result (Column (2) Table 1) for
difference cut-off distances of spatial correlation (from 0.5 km to 200 km).

35Distances are computed using the distances between each sublocation centroids. For each sublocation,
the centroid location is calculated using the geometric center method
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Table 9: Effect of the number of dry rainy season on the DPGR, Conley spatial
correction

Outcome DPGR

Conley spatial correction threshold 0 km 1 km 10 km 20 km 50 km 100 km 200 km

(1) (2) (3) (4) (5) (6) (7)

Number of dry years -1.920*** -1.920*** -1.920*** -1.920*** -1.920** -1.920* -1.920*
[0.568] [0.571] [0.612] [0.701] [0.845] [1.007] [0.996]

Number of dry years × density 0.00116* 0.00116 0.00116 0.00116 0.00116 0.00116 0.00116
[0.000676] [0.000755] [0.000903] [0.000919] [0.000940] [0.000948] [0.00101]

Period FE Yes Yes Yes Yes Yes Yes Yes
Sublocation Yes Yes Yes Yes Yes Yes Yes

N 5036 5036 5036 5036 5036 5036 5036
R2 0.674 0.00450 0.00450 0.00450 0.00450 0.00450 0.00450

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North Eastern
provinces are excluded. Each demographic variable is winsorized at the 5% threshold.

9.3.2 Placebo tests

This section runs randomization tests to verify the statistical significance of the treatment
effect, checking whether it is unlikely to be observed by chance. I draw 1500 permuta-
tions and compute the precise p-value based on the distribution of the 1500 counterfactual
treatment effects, under the sharp null hypothesis of no effect 36. Figure 17a runs spa-
tial counterfactuals as sublocations are assigned rainfall shocks from a randomly selected
sublocation. This maintains the distribution of the independent variable and removes
spatial patterns. Figure 17b randomly changes the timing (and thus the total number) of
the rainfall shocks for each sublocation.

Both simulations show that the distribution of the treatment effects are shifted around
zero, and are almost perfect replication of the standard normal distribution. The vertical
lines indicate the location of the estimates under the implemented treatment assignment
(Table 1 Column 2), indicating the rejection regions, and gives the new estimated p-
value. I am sure at the 1% level (Figure 17b) and 5% level (Figure 17a) that the model is
not misspecified. Figure 33 replicates this inference test, changing randomly the treated
sublocations for the binary treatment over 1500 permutations, and shows that the binary
treatment model is not misspecified at the 1% level.

36The test is done using the ritest STATA command.
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Figure 17: Temporal randomization inference tests - Continuous treatment

(a) Random sublocation (b) Random timing

Notes: The two figures represent the distribution of the treatment effects of the number of
dry years when conducting 1,500 permutations. Figure (a) randomly changes the sublocations
allocation to droughts while Figure (b) randomly changes the timing/number of droughts for
each sublocation. The vertical line indicates the location of the estimate under the
implemented treatment assignment (Table 1 Column 2), and gives the new estimated p-value.
Sources: Author’s elaboration on CHIRPS and KNBS data.

9.3.3 Spatially dependent trends

The occurrence of rainfall is, by nature, spatially and temporally correlated, which can
generate a spurious relationship between rainfall and other spatially correlated outcomes.
Issues linked to omitted variables are exacerbated in the presence of spatial dependency.
Sublocation fixed effects, as well as [Conley, 1999] standard errors (previous Section 9.3.1)
control for spatial patterns, as long as the dependent variable only exhibits spatial corre-
lation. However, spurious correlations remain in the case of spatially dependent trends.

Section 9.3.2 represents a first solution to the problem of spurious rainfall effects when
temporal trends are spatially correlated. It shows that my estimate is robust to testing for
the null hypothesis rejection when both changing the spatial and temporal allocation of
rainfall shocks. This section goes beyond placebo tests in solving the problem of spurious
correlation, following the procedure of Lind [2019].

First, Figure 18 illustrates the spatial dependency of the dependent variable. Fig-
ure 18a plots the geographical distribution of sublocation temporal trends, as it plots
the DPGR long-difference for each sublocation. It displays clear positive trends in the
north-eastern part of the country (excluding the north-eastern province), while more at-
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Figure 18: Spatiotemporal patterns of DPGR

(a) DPGR trends (b) Moran’s plot - DPGR trends per neigh-
boring

Notes: Figure (a) plots the spatial distribution of the DPGR trends (or long-difference).
Figure (b) plots Moran’s scatterplot.
Sources: Author’s elaboration on KNBS data.

tenuated, decreasing trends in the west and the center. Figure 18b tests for Moran’s I
statistics. It shows a Moran plot, plotting the sublocation DPGR long-difference against
the average trends in adjacent municipalities 37. The slope of the line is Moran’s I co-
efficient, which equals 0.10***. The positive slope suggests that when the DPGR of a
sublocation increases, so does those of its neighboring sublocations. Moran’s test for no
spatial dependency is rejected with a very small p-value (2.2 × 10−16), and shows the
spatial correlation of the migration outcome. Figure 14 shows the spatial clustering of
the trends of rainfall shocks as well.

As spatial pattern is found, Table 10 proposes several tests. Columns (2) to (4) control
for spatial trends and show the robustness of the main estimation. Column (2) controls
for province trends and Column (3) for district trends. Column (4) control for the tensor
product of Legendre polynomials with 1× 6 terms to control for spatiotemporal trends as
proposed in Lind [2019], and show that my estimation is robust 38.

37Moran’s scatterplot and test have been conducted using the moran.test from R spdep package
38The tensor is a function of longitude, latitude and time, such as T (x, y, t) = U(x, y)t =

t
∑K

k=0

∑L
l=0 klPk(x)Pl(y), where Pi(.) is the ith-order Legendre polynomial. Legendre polynomials are

defined recursively with P0(x) = 1, P1(x) = x, and for i ≥ 2, Pi(x) = [(2i−1)xPi−1(x)− (i−1)Pi−1(x)]/i
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Table 10: Effects of the number of dry rainy season on the DPGR -Controling for
Spatiotemporal trends

Without trend With trend

(1) (2) (3) (4)

Number of dry years -1.920*** -2.789*** -3.566*** -1.881***
[0.568] [0.674] [0.965] [0.582]

Number of dry years × density 0.00116* 0.00169** 0.00124* 0.00111
[0.000676] [0.000783] [0.000730] [0.000687]

Period FE Yes No No Yes
Sublocation FE Yes Yes Yes Yes
Province trend No Yes No No
District trend No No Yes No
Tensor product of Legendre Polynomials No No No Yes

N 5036 5036 5036 5036
R2 0.674 0.679 0.695 0.674
Mean DPGR (%) 27.75 27.75 27.75 27.75

Notes:Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
Nyanza and North Eastern provinces are excluded. Each demographic variable is winsorized at
the 5% threshold.

9.4 Contamination of the Control group

One concern in the main analysis is the overestimation of the effect due to the contami-
nation of the control group. The main result shows that being hit by an additional dry
year increases the likelihood of out-migration. As the results suggest a rural-rural migra-
tion mainly born by herders, there is a low probability of international migration in the
setting. The universe of individuals remaining stable, out-migrants are likely to migrate
towards control sublocations, which biases the DiD estimation. The main concern is that,
as the DPGR of treated sublocations decreases due to droughts, the DPGR of control
sublocations de facto increases, being the recipient of out-migrants. As the DiD estimates
the difference in demographic growth between the treated and control areas, this gives an
upward bias of the result.

Section 8.2 suggests that the individuals migrate within sublocations with humid con-
ditions. Figure 13 shows that being under an additional moderate wet year increases
the DPGR by 1.5 p.p . These results suggest that within control areas, migrants favor
sublocations becoming wetter (but not too much wet). As the goal of this Section is to
test the contamination of the control group, I check whether the result remains stable
when excluding those sublocations for which the DPGR increases.
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Figure 19: Effects of the number of dry years on the DPGR - changing samples
for estimation

(a) TWFE Continuous treatment (b) DiD Binary treatment

Notes: Figures plot the effect of the number of dry years excluding sublocations for which the
number of years the rains exceed a certain threshold are excluded. Figure (a) plots the effect
of several regressions for the TWFE continuous treatment, while Figure (b) plots the
treatment effect for the binary treatment. For instance, the coefficient 60 in Figure (a) gives
the estimator when excluding all sublocations for which the number of wet years is not stable
across periods, defining wet years according to years for which cumulative rains over MAMJ
exceed the 60th threshold. N gives the number of observations for each regression.

Figure 19a plots the results of the main estimation, looking at the effect of the number
of dry years changing the sample of the control group. The coefficient 60 excludes all
sublocations for which the number of wet years is not stable across periods, defining wet
years as being years for which cumulative rains over MAMJ exceed the 60th threshold. It
shows that for sublocations for which the number of humid years remained stable across
periods, one additional dry year decreases the DPGR by 4 p.p, showing that the main
result of this paper is not overestimated. The other dots correspond to different levels of
exclusions. Figure 19b replicates the same exercise for the binary treatment as defined in
Section 9.1.1.

9.5 Other climate indicators

9.5.1 The role of temperature and evapotranspiration

Table 11 Column (1) shows that the main result of this paper is robust when controlling
for mean temperature and PET over the rainy season across periods. Climate shocks
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being multidimensional [Auffhammer et al., 2013], this section goes beyond looking at the
effect of extremely warm temperatures. I define the number of hot years per period as
the number of years for which the mean temperature over MAMJ is over the 90th decile
of the temperature distribution of each sublocation. Table 11 Columns (2) displays no
significant effect of extreme temperature on the DPGR, and shows that the effect of the
number of droughts is robust when controlling for temperature anomalies.

Table 11: Effects of the number of dry rainy season on the DPGR - Control for
temperature and evapotranspiration

All Kenya

(1) (2) (3) (4) (5) (6)

Number of dry years (10th decile) -1.769*** -1.881*** -1.930***
[0.603] [0.580] [0.672]

Number of dry years × density 0.000874 0.00136* 0.00130*
[0.000669] [0.000710] [0.000708]

Number of hot years (90th decile) 1.491
[1.048]

Number of hot years (80th decile) 0.0988
[0.755]

Number of dry years (SPEI - 2months) -1.110*
[0.635]

Number of dry years (SPEI - 3months) -0.383
[0.579]

Number of dry years (SPEI - 4months) 0.436
[0.606]

Period FE Yes Yes Yes Yes Yes Yes
Sublocation FE Yes Yes Yes Yes Yes Yes
Temp and PET Controls Yes No No No No No

N 5036 5034 5034 5036 5036 5036
R2 0.674 0.675 0.674 0.673 0.673 0.673
Mean DPGR (%) 27.75 27.74 27.74 27.75 27.75 27.75

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and
North Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.

Columns (2) to (6) display the result of the number of dry years defined according to
the SPEI [Vicente-Serrano et al., 2010], which controls for both temperature and PET
(Section F.4 gives the definition of the SPEI). Number of dry years (SPEI -2months) is
the number of years for which at least two months over the MAMJ season are under a
drought. Number of dry years (SPEI -4months) indicates a dry year if the entire rainy
season is under droughts according to the SPEI definition. The results show almost no
effect of the SPEI, only the Number of dry years (SPEI -2months) decreases the DPGR
by 1.1 p.p and is hardly significant at the 10% level. This is mainly explained by the fact
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that, as the SPEI looks at anomalies of water balance, it captures temperature trends and
identifies less critical droughts than my estimator relying on rainfall shortages directly.
Figure 34b in Section F.4 plots the number of sublocation under a dry year according
to the SPEI definition, and shows that the dry years are more temporally and spatially
distributed.

9.5.2 Other indicators

Table 12 shows the effect of the number of years under abnormal climate conditions, de-
fined according to other climate indicators than cumulative rains. All indicators are built
over the long-rainy season MAMJ. Column (1) looks at the effect of the number of years
for which the number of wet days is very low (R1plus under its 10th decile), Column (2)
for which the length of the longest dry spell is high (CDD over its 90th decile), Column
(3) for which the length of the longest wet spell is low (CWD<10th decile). Column (4)
and (5) gives the effects of the number of years for which the daily intensity of rains is
low (under the 10th decile) and high (above the 90th decile).

Table 12: Effects of other climatic indicators on the DPGR

All Kenya

Indicator R1plus CDD CWD SDII SDII

Threshold 10th decile 90th decile 10th decile 10th decile 90th decile
(1) (2) (3) (4) (5)

Number years under/above threshold -0.325 -0.0120 -0.546 -1.261** -0.210
[0.530] [0.409] [0.694] [0.493] [0.479]

Period FE Yes Yes Yes Yes Yes
Yes
Sublocation FE Yes Yes Yes Yes Yes
Yes

N 5036 5036 5036 5036 5036
R2 0.673 0.673 0.673 0.674 0.673

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and
North Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.

Table 12 shows no significant effect for each indicator, aside from the decrease in the
daily intensity of rains. An additional year with a low daily intensity of rains decreases
the DPGR by 1.26 p.p. As the SDII gives the cumulative precipitations divided by the
number of wet days (R1plus), it is the closest to the main independent variable and ex-
plains why it is significant. Table 12 shows that it is mainly the drop in cumulative rains
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over MAMJ that play a key role in migration.

Table 26 in Section F.4 shows no effects of droughts nor floods occurring during the
short rainy season OND.

9.6 Replication at the district level

Table 13: Effects of the number of dry rainy season on district DPGR

All Kenya Urban Rural Low Pastoralism High Pastoralism

(1) (2) (3) (4) (5) (6)

Number of dry years -5.035* -5.526* 1.691 -5.858* 2.722 -7.594**
[2.844] [3.124] [2.905] [3.304] [3.094] [3.472]

Number of dry years × density 0.00748 -0.00348 0.00828 0.00204 0.0114
[0.00968] [0.00727] [0.0105] [0.00714] [0.0111]

Period FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

N 76 76 66 76 58 76
R2 0.870 0.871 0.868 0.871 0.904 0.863
Mean DPGR (%) 43.68 43.68 46.85 42.10 29.34 43.82

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North
Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.

Table 13 replicates the main analysis at the district levels. It looks at the effects of
the number of dry years on the demographic growth of districts. For each district, I build
the DPGR by looking at the total population per district and year. Results from Table
13 show that an additional dry year decreases the district DPGR by 5p.p, which is again
mainly born by rural areas, where pastoralism is the main economic activity 39. The
results being hardly significant at the 10% levels, it shows the comparative advantage
to look at the effect at a less aggregated level. A main contribution of this paper is to
look at the effects at the sublocation level, which makes it possible to capture the small
magnitude effects found in the heterogeneity analysis, which are not found when looking
at the district level.

Section G proposes another estimation, looking at the effects of yearly droughts on the
inter-district bilateral migration flows using a PPML estimation. Again, as the results

39The magnitude size seems to differ from the main estimation, but this is mainly driven by higher
DPGR mean at the district levels. A 5 p.p decrease in the DPGR at the district corresponds to a 8%
increase. The mean DPGR is higher because the winsorization has been done on the population sizes at
the sublocation level before aggregating at the district level. As there are only 41 districts, the DPGR
could not be winsorized at the aggregated level.
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fail to find a significant out-migration at the district level, it shows the necessity to look
at the effects at the scale of sublocation in order to capture small magnitude effects.

10 Conclusion

This paper estimates the effects of past climatic conditions on migration movements, in
the long run at a micro-level in Kenya. In recent decades, Kenya has faced downward
trends in the number of rainy days and the length of wet spells during the long-rainy
season, associated with higher intensity of wet days. This decrease in the length of the
agricultural period is associated with an increase in the occurrence of droughts in a coun-
try highly vulnerable because dependent on agricultural and livestock incomes. In the
most recent period, several droughts are identified in Kenya with different spatial coverage
(2000, 2004, 2008-2009), and this increase in the repetition of droughts since 2000 makes
Kenya an interesting setting to analyze the effects of climate shocks on local migration.

This paper exploits the spatial variation of the intensification of dry events since the
2000 regional El Nino drought and investigates the migration response at a local level
in the long-run. I match exhaustive administrative census data provided by the KNBS
with high accuracy, spatial and temporal resolution precipitation and temperature data
from the CHC over 20 years. I use the decadal population growth rate (DPGR) of 2518
sublocations over two periods, [1989-1999] and [1999-2009] as a proxy for migration rates.
I propose a two-way fixed effects strategy that estimates the effects of an additional dry
rainy season over each 10-year period on the DPGR.

The results show that an additional dry rainy season decreases the DPGR by 1.7 p.p,
which corresponds to a 6% reduction of the DPGR. The effect is mainly driven by the out-
migration of rural areas, especially those where pastoralism plays a key role in livelihood
strategies. The result is robust to restricting the sample to the [15-65] cohort, which shows
that it is not driven by a change in fertility outcomes, old age, or infant mortality rates. I
find no effects of the number of floods, showing that the migration is mainly triggered by
the repetition of slow-onset events such as droughts rather than rainfall extreme disasters.

The main contribution of the paper is a multi-dimensional heterogeneity analysis,
which identifies different types of migrations across livelihoods. Within rural areas where
pastoralism prevails, I find little heterogeneity in migration across gender, age brackets,
and educational levels. This suggests that herders out-migrate with their entire house-
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holds. The results suggest that repetitive droughts change the livelihoods of relatively
sedentarised pastoralists located within the South of the Rift Valley, coping with climate
events by migrating towards agriculture-oriented rural areas. This result relates to rural-
rural migration being a solution of last resort for herders.

Overall, agriculture-oriented rural areas are less vulnerable to droughts. Within these
sublocations, I observe important heterogeneity, as the out-migration is mainly driven by
skilled and young individuals who reached the age of working, in line with an individ-
ual migration. Results display a trap effect for the illiterate population, which can be
interpreted as the consequence of liquidity constraints, or limited job-opportunity in the
destination. These results suggest that farmers’ households adapt to recurrent droughts
with the out-migration of the most skilled individuals, who are the more able to work.
This relates to an off-farm adaptation strategy of income diversification.

This paper is in-line with a rural-rural migration in response to the repetition of several
droughts occurring over a short span. Changing the thresholds of treatments, for both dry
and wet events, the results suggest that individuals out-migrate from rural areas where
pastoralism prevails to agriculture-oriented rural areas with normal and humid conditions.

I run manyfold robustness checks and show that the results hold when using a simple
difference-in-difference strategy with binary treatment and controlling for the de Chaise-
martin and d’Haultfœuille [2020] estimator. I show that the results are not biased by
spurious correlation, as they are robust to correcting for spatial auto-correlation [Conley,
1999], spatial and temporal randomization inference tests, and correcting for spatially
dependent trends [Lind, 2019]. I find no effects on other climate indicators such as highly
hot rainy seasons and dry short-rainy seasons and propose a test to correct for the con-
tamination of the control group.
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A Appendix

B Data

B.1 Population censuses

Table 14 gives the number of individuals for each census in each province of Kenya. It
compares the number of observations calculated from the data to the one stated in the
official report censuses. If there is little difference between the dataset and the report for
all of Kenya, the numbers differ across provinces. The missing observations are reduced
across the years (and much smaller in 2009), however, we can observe an important dif-
ference between the data and reports for Nyanza province in 1989, with more than 90%

of the observations missing. Another high discrepancy is for the North Eastern province
in 1999, with 16% of the total population missing according to the report. Tables 15
and 16 show in more detail that it is necessary to exclude the Nyanza and North Eastern
provinces from the analysis.

Table 15 (resp. 16) shows descriptive statistics of the population distribution within
Nyanza (resp. North Eastern), at the scale of districts 40. Column(1) gives the total
number of individuals in each district, while Column (2) is the mean (standard deviation)
of the sublocation sizes within the district. Column (3) displays the number of individuals
living in the smallest (resp. biggest) sublocation of the district. Nyanza province is made
up of four districts, Kisii, Kisumu, Siaya, and South Nyanza. While Kisii is totally absent
from the dataset in 1989, the three other districts have abnormally low numbers in 1989
(Column (3)), compared to the two other censuses. Thus, these irregular numbers exhibit
that the missing observations in Nyanza in 1989 are not only driven by the absence of
Kisii in the dataset, nor the total absence of some sublocations, but missing observations
distributed within sublocations. Thus, there is no district/sublocations that can be kept
in the analysis.

The same issue is observed in Table 16 for North Eastern in 1999, with very low mini-
mum values for the sublocations population in comparison to 1989, especially in Mandera.
If the overall population has increased between 1989 and 1999, the sublocation popula-
tions have decreased, such as the size of the smallest sublocation (and biggest, apart from
Wajir). This is in accordance with the information from Table 19 which shows that 16%

of the total observations are missing in the censuses. Such as Nyanza province, I can not
40districts matched over the censuses to the districts in 1989
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conclude that these missing data are driven by some districts or sublocations and exclude
North Eastern province from the analysis. Besides, Table 16 displays high standard values
for the population of sublocations, which illustrates skewed population distributions with
spread-out differences.

The other provinces have comparable missing observations from what is stated in the
reports.
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Table 14: Returns from the census report and micro data, 1989, 1999 and 2009

1989 1999 2009 1999 -1989 p.a (%) 1999 -1989 p.a (%) 2009 -1989 p.a (%)

province Data Report Missing Data Report Missing Data Report Missing Data Report Diff. (p.p) Data Report Diff. (p.p) Data Report Diff. (p.p)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

Nairobi 1,242,424 1,324,570 6.2 2,004,116 2,143,254 6.5 3,109,424 3,138,369 0.9 4.9 4.9 0 4.5 3.9 0.6 4.7 4.4 0.3

Central 3,040,580 3,116,703 2.4 3,593,417 3,724,159 3.5 4,368,888 4,383,742 0.3 1.7 1.8 -0.1 2 1.6 0.3 1.8 1.7 0.1

Coast 1,770,088 1,829,191 3.2 2,369,247 2,487,264 4.7 3,290,292 3,325,307 1.1 3 3.1 -0.2 3.3 2.9 0.4 3.1 3 0.1

Eastern 3,701,017 3,768,677 1.8 4,525,518 4,631,779 2.3 5,636,311 5,668,123 0.6 2 2.1 -0.1 2.2 2 0.2 2.1 2.1 0.1

North Eastern 364,923 371,391 1.7 807,198 962,143 16.1 2,301,746 2,310,757 0.4 8.3 10 -1.7 11 9.2 1.9 9.6 9.6 0.1

Nyanza 117,160 3,507,162 96.7 4,263,934 4,392,196 2.9 5,416,670 5,442,711 0.5 43.3 2.3 41 2.4 2.2 0.3 21.1 2.2 18.9

Rift Valley 4,789,367 4,981,613 3.9 6,723,765 6,987,036 3.8 9,949,727 10,006,805 0.6 3.5 3.4 0 4 3.7 0.3 3.7 3.5 0.2

Western 2,555,504 2,544,329 -0.4 3,299,835 3,358,776 1.8 4,317,466 4,334,282 0.4 2.6 2.8 -0.2 2.7 2.6 0.1 2.7 2.7 0

Kenya 17,581,063 21,443,636 0.2 27,587,030 28,686,607 0.0 38,390,524 38,610,096 0 4.6 3 1.7 3.4 3 0.3 4 3 1
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Table 15: Returns from the micro data in Nyanza province, 1989, 1999 and 2009

Nyanza 1989 Nyanza 1999 Nyanza 2009

N(indiv.) Mean(SD) Min(Max) N(indiv.) Mean(SD) Min(Max) N(indiv.) Mean(SD) Min(Max)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Nyanza 117160 248.75 10 4263934 4575.04 321 5416670 5624.79 353
(166.66) (1854) (3198.62) (40334) (4036.91) (47412)

Kisii 0 0 0 1416096 6525.79 1694 1744961 7240.5 767
(0) (0) (0) (3316.63) (28372) (4283.91) (43388)

Kisumu 32589 285.87 26 770861 4729.21 667 959027 5708.49 353
(254.56) (1854) (4597.06) (40334) (5780.06) (47412)

Siaya 31768 209 43 699686 3953.03 972 838779 4685.92 1187
(78.06) (535) (1885.86) (13571) (2503.46) (18069)

South Nyanza 52803 257.58 10 1377291 3672.78 321 1873903 4997.07 373
(146.85) (827) (2251.74) (17148) (3120.65) (23155)

Table 16: Returns from the micro data in North Eastern province, 1989, 1999 and
2009

North Eastern 1989 North Eastern 1999 North Eastern 2009

N(indiv.) Mean(SD) Min(Max) N(indiv.) Mean(SD) Min(Max) N(indiv.) Mean(SD) Min(Max)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

North Eastern 364923 3119 236 807198 2603.86 112 2301746 7238.19 373
(2509.88) (14869) (2378.21) (19718) (7477.14) (65386)

Garissa 121857 2972.12 422 253028 2750.3 283 619497 6733.66 786
(2589.19) (14869) (3011.6) (19718) (10606.52) (65386)

Mandera 121050 3904.84 936 245110 2113.02 112 1023653 8602.13 373
(2945.56) (12619) (1908.56) (8581) (6805.94) (33636)

Wajir 122016 2711.47 236 309060 3030 215 658596 6155.1 713
(1993.12) (8548) (2122.44) (14247) (3944.39) (23349)
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B.2 Construction of the sublocations panel

One main challenge of this study was to build a panel of sublocations over the 20 years, as
administrative frontiers of sublocations have changed over decades. Sublocations frontiers
in 1989 differ from those in 1999, which differ from those in 2009. If some transformations
are geometrically coherent (fusion/division of previous frontiers), some transformations
had no geometrical logic. To have a panel of sublocations, I have created new units coher-
ent over time, both by hand and via coding (for recognizable geometric transformations).

Figure 20 plots the transformation and displays each unit design used in the paper.
same means that the sublocation has never changed during the three censuses, fraction
that it has been divided at least once, and fusion merged with other sublocation (at least
once). Entite indicates new units that I have created by hand, merging sublocation to-
gether so that I can have a coherent and stable population panel per sublocations over
the 20 years.

Figure 20: Matching of sublocation - type of transformation

Notes: The Figure maps the transformation that has been done to build the sublocation
panel.
Sources : author’s elaboration on KNBS data.

Table 17 provides descriptive statistics on the matching of sublocations between the
three Kenyan censuses 1989, 1999, and 2009 (based on whether the frontier is built from
1989, or the 1999 or the 2009 frontiers). The comparison is made on the areas in km2,
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calculated from the map created based on 1989/1999 sublocations, in comparison to the
one used in the analysis, made based on 2009 sub localities. We observe that the difference
between the 1999 and 2009 maps is smaller. The paired samples t-test does not reject the
null hypothesis of the mean of the average areas, which confirms that the three matchings
are similar.

Table 17: Descriptive Statistics : Sub locations matching between censuses

Area (km2) Area (km2)
Diff [1989 -2009] Diff [1999 -2009]

N. perc. Mean S.D P-Value Mean S.D P-Value

Entity 244 7.76 -4.55 109.7 0.51 0.92 86.89 0.87
Fraction 1424 45.26 1.95 91.25 0.42 -0.19 22.41 0.74
Fusion 2 0.06 22.53 32.61 0.51 14.34 20.18 0.50
Same 1476 46.9 21.5 43.97 0.06 0.014 20.63 0.98
Total 3146 100 1.55 74.9 0.25 -0.00 31.8 0.99

C Setting

C.1 Climatogy - descriptive statistics

Figure 21 plots the long-term average of monthly precipitations across provinces. It shows
that all Kenyan provinces follow a bimodal seasonal pattern. Figure 22 plots the long-term
mean of rainfall characteristics over the MAMJ season across several indicators. Table 18
gives the definition of each indicator.
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Table 18: Extreme precipitation indices and their ETCCDI and ECA definitions
(from Gebrechorkos et al. [2019])

Indicator Definition Unit

R1+mm Number of wet days : Sum of days where daily Days
precipitation is ≥ 1mm over the long rainy season

R1-mm Number of dry days : Sum of days where daily Days
precipitation is < 1mm over the long rainy season

R20mm Number of heavy rains : Sum of days where daily Days
precipitation is > 20mm over the long rainy season

CWD Consecutive wet day index : maximum number of consecutive Days
days with precipitation above 1 mm over the long rainy season

CDD Consecutive dry day index : maximum number of consecutive Days
days with precipitation below 1 mm over the long rainy season

SDII Simple Daily intensity index : total precipitation mm/Day
divided by R1+mm over the long rainy season
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Figure 21: Long-term average of monthly precipitation across provinces

Notes: The Figures represent the long-term average of the monthly precipitation (1983-2013)
(mm) over Kenya (a) and among all the Provinces (b-i). Red lines plot the 95th percentile of
rainfall distribution, blue lines the 50th percentile, and green lines the 5th percentile.
Sources : author’s elaboration on CHIRPS data.
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Figure 22: Spatial distribution of the long-term average of climate indicators

Notes: The Figure plots the spatial distribution of long-term averages over 1983-2013 of (a)
R1+ (mm) (b) SDII (mm/day) (c) CWD (days) (d) CDD
Sources : author’s elaboration on CHIRPS data.
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C.2 Long-term evolution of rainfall

Figure 23: Long-term trends of climate indicators

Notes: The Figure plots the annual (a) and long-rainy season trends (b) of precipitation
amounts (mm) during the long-term period 1983-2013, based on CHIRPS data. The bottom
panels show the significance of the trends at p < 0.05. Blue (+1) displays significant increasing
trends, while red (-1) is a significant decreasing one and 0 non-significant changes.
Sources: Author’s elaboration on CHIRPS data.

The long-term trend analysis of annual precipitation and long-rain amounts shows
little significant changes. Figure 23 plots the trend values of yearly cumulative rains (a)
and cumulative rains over the long-rainy season (b) over the 1983-2013 period. Annual
precipitations display a significant increasing trend in the western part of the country,
with up to 28mm increase at the frontier between the Western region and the Rift Valley.
The increasing trend in the northwest part of the Rift Valley is lower, but still significant,
ranging from 5 to 10 mm increase per year. The only significant decreasing trends in an-
nual precipitations are found along the Coast, around the city of Lamu, and the highest
decreasing trend is about -12mm per year. The observed decreasing trends in the South
of the Eastern region are not significant, such as the increasing trends in the northeast of
the country. Trends over the long-rainy season are in coherence with the annual trends,
significantly increasing in the west and north part of the Rift Valley (up to +12 mm) and
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significantly decreasing around Lamu (up to -11 mm) and in some parts of the Eastern
and North Eastern regions.

Figure 24: Long-term trends of climate indicators (2)

Notes: The Figure plots (a)R1+mm(b)R1+mm and (c) R20mm trends over the long-rainy
season (days), during the long-term period 1983-2013, based on CHIRPS data. The bottom
panels show the significance of the trends at p < 0.05. Blue (+1) displays significant increasing
trends, while red (-1) is a significant decreasing one and 0 non-significant changes.
Sources : author’s elaboration on CHIRPS data.

Figure 24 and Figure 25 show a long-term modification in precipitation characteristics,
each indicator being described in Table 18. Figure 24 (a) and (b) are symmetric de facto
41. The number of wet days during MAMJ (R1+mm) (resp. dry days (R1-mm)) has
significantly decreased (resp. increased) along the coast and in large part of the Eastern
Region, from -0.35 days to -0.76 days (resp +0.35 to +0.73 days). In these areas (and
especially the Eastern region), this comes with significant increases in the Simple Daily

41By construction, R1+mm + R1-mm =122 days, i.e equals the total number of days during MAMJ
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Intensity Index (SDII) (Figure 25 (a), between +0.3 and +0.78 mm per day), and signif-
icant decreases (resp. increases) in the Consecutive Wet Day index (CWD) (resp. Dry
Day index CDD), up to -0.54 days (resp. +1.75). These results show that rains over
the long-rainy season are becoming more concentrated over shorter periods and days, and
that daily rainfall intensity has increased.

The number of days of very heavy precipitation days (R20mm) displays significant
increasing trends over the Rift Valley (up to +0.39 days), which coincides with significant
increases in the north of the daily intensity (SDII) and precipitation amounts (Figure 23
(b)). This suggests that increasing trends of rainfall magnitudes in the northern part
of the Rift Valley are due to an increase in heavy precipitation days. R20 mm displays
significant decreasing trends along the Coast and the Western region of Kenya.

This long-term trends analysis shows that the ASALs region, and particularly across
the Eastern region, are facing downward trends in the number of rainy days and the
length of wet spells during the long-rainy season, associated with higher intensity of wet
days. This suggests a decrease in the length of the agricultural period and an increase
in extreme events, in a region highly vulnerable because dependent on the agricultural
sector (transition from pastoralism systems to more intensive types of production and
mixed systems, with increases in livestock production and reductions in lands associated
to rangeland systems [Silvestri et al., 2012]).

73



Figure 25: Long-term trends of climate indicators (3)

Notes: The Figure plots (a)SDII (mm.day−1)(b)CWD and (c) CDD(days) trends over the
long-rainy season (days), during the long-term period 1983-2013, based on CHIRPS data. The
bottom panels show the significance of the trends at p < 0.05. Blue (+1) displays significant
increasing trends, while red (-1) is significant decreasing one and 0 non-significant changes.
Sources : author’s elaboration on CHIRPS data.
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C.3 Temporal and spatial variation of population and migration

Figure 26: Spatial distribution of the population density across census wave

Notes: The Figures plot the population density for each sublocation in 1989 (a), 1999 (b) and
2009 (c).
Sources : author’s elaboration on KNBS data.

Table 19 and Table 20 display descriptive statistics of population, density, and popu-
lation growth variables across period for each province 42. Apart from Nyanza and North
Eastern, The yearly (p.a) and decadal (DPGR) growth of the population are stable when
calculated from different censuses 43. When looking at DPGR long-differences for Nairobi,
Central, Coast, Eastern Rift Valley, and Western provinces, we do not observe any clear
pattern for the demographic evolution of the country. Indeed, while the DPGR long-
difference is positive in some regions (+11p.p in Eastern, +7p.p in Rift Valley, and +
1p.p in Western) it is negative for others (especially in Nairobi, with -25p.p, as it was
already a densely populated area in 1989). Thus, we conclude that the +2.56 p.p long
difference of the control group from Table 6 (Column (9)) is not erratic and is in line with
the descriptive statistics of Table 20.

42The per annum population growth rate is defined as follows: p.a = exp(
log(

pop(t2)

pop(t1)

10 )− 1
43As the Table 20 gives information about Nyanza and North Eastern provinces, the national average

includes both provinces with discrepancies
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Figure 27 plots the spatial distribution of the population size for each census wave,
while Figure 26 plots the spatial distribution of the population density for each census
wave.

Figure 27: Spatial distribution of sublocation’s population size across census wave

Notes: The Figures represent the population sizes per sublocations over Kenya in (a) 1989 (b)
1999 and (c) 2009. Density is displayed without Nyanza and North-Eastern provinces.
Sources : author’s elaboration on KNBS data.
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Table 19: Descriptive Statistics of Province Population from microdata 1989, 1999 and 2009

1989 1999 2009 [1999-1989] [2009-1999]
Tot Mean\(SD) Min\(Max) Tot Mean\(SD) Min\(Max) Tot Mean\(SD) Min\(Max) DPGR-1\(p.value) DPGR-1\(p.value)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Kenya
Population 17168480 5720.92 10 25953524 8648.29 82 36394457 12127.44 31 2.59 -0.61

(8139.99) (187901) (13435.42) (292173) (22254.18) (407124) (0) (0)
Densite 31.02 389.13 0.1 46.9 514.15 0.09 65.76 623.76 0.23

(1789.95) (49036.32) (2109.74) (54387.98) (2590.79) (78040.3)
Nairobi
Population 1238130 29479.29 3589 2013992 47952.19 4793 3126064 74430.1 3423 -0.32 -0.57

(36192.97) (187901) (55833.19) (228140) (98434.71) (402314) (0.05) (0)
Densite 1765.91 8242.79 128.46 2872.5 10473.68 75.31 4458.62 13037.51 126.71

(10662.55) (49036.32) (12383.89) (54387.98) (15450.94) (78040.3)
Central
Population 3007551 5478.23 337 3570204 6503.1 188 4335680 7897.41 31 -0.82 -0.86

(3682.58) (53101) (5612) (79785) (10030.85) (142038) (0) (0)
Densite 239.51 471.91 2.72 284.32 535.01 2.66 345.28 601.88 0.44

(319.58) (2861.02) (429.11) (4185.92) (583.68) (6906.88)
Coast
Population 1761859 6936.45 107 2358618 9285.9 135 3281875 12920.77 122 -0.63 -0.65

(10992.72) (138465) (16604.07) (217622) (27581.73) (364838) (0) (0)
Densite 21.26 715.09 0.16 28.46 782.96 0.09 39.6 926.87 0.23

(2819.09) (22369.66) (3013.73) (24954.31) (3414.65) (25507.43)
Eastern
Population 3543644 6173.6 61 4377931 7627.06 82 5425613 9452.29 444 -0.78 -0.67

(5577.4) (73633) (7527.84) (87963) (10812.7) (139172) (0) (0)
Densite 26.46 214.4 0.1 32.69 249.9 0.14 40.51 285.35 0.5

(296) (3474.96) (348.12) (4614.6) (392.62) (5421.07)
North Eastern
Population 383489 5478.41 356 848459 12120.84 1136 2401879 34312.56 2054 0.65 1.52

(6253.4) (27609) (14182.34) (64918) (38484.75) (179846) (0.03) (0)
Densite 2.88 8.77 0.31 6.36 16.3 1.04 18.02 43.76 0.89

(20.94) (139.07) (41.13) (304.99) (96.13) (589.3)
Nyanza
Population 115999 280.87 10 2829841 6851.92 667 3655104 8850.13 867 22.9 -0.74

(235.43) (2564) (6323.28) (79181) (8565.74) (91743) (0) (0)
Densite 11.27 16.81 0.52 274.99 388.67 27.26 355.18 487.25 30.3

(35.31) (576.46) (660.68) (7789.81) (836.29) (10700.2)
Rift Valley
Population 4581581 6012.57 28 6659156 8739.05 194 9858857 12938.13 301 -0.53 -0.46

(7585) (102510) (15444.61) (292173) (22992.29) (407124) (0) (0)
Densite 26.62 107.07 0.37 38.69 139.45 0.77 57.28 189.98 2.13

(126.99) (1863.25) (156.29) (1635.77) (226.38) (2857.4)
Western
Population 2536227 7525.9 2024 3295323 9778.41 2301 4309385 12787.49 2467 -0.73 -0.72

(3902.76) (37543) (5885.51) (53084) (8183.55) (62313) (0) (0)
Densite 331.66 500.52 35.24 430.92 590.83 92.24 563.53 728.8 104.9

(385.22) (4632.43) (348.88) (2557.51) (407.97) (3533.53)

77



Table 20: Descriptive Statistics of Province Population Growth from micro data,
1989, 1999 and 2009

[1989-1999] [1999-2009] Diff p.p (5)-(2) p.value
Total Mean//(SD) Min//(Max) Total Mean//(SD) Min//(Max)
(1) (2) (3) (4) (5) (6) (7) (8)

Kenya
DPGR 0.51 3.59 -0.83 0.4 0.39 -0.84 -3.21 0

(9.4) (247.8) (1.02) (36.16)
p.a (%) 4.22 7.24 -16.08 3.44 2.67 -16.49 -4.57 0

(12.52) (73.61) (3.26) (43.55)
Nairobi
DPGR 0.63 0.68 -0.58 0.55 0.43 -0.57 -0.25 0.07

(1.03) (4.19) (0.55) (2.64)
p.a (%) 4.99 4.06 -8.34 4.49 3.07 -8.16 -0.99 0.17

(5.34) (17.89) (3.68) (13.79)
Central
DPGR 0.19 0.18 -0.54 0.21 0.14 -0.84 -0.04 0.03

(0.4) (6.16) (0.28) (2.48)
p.a (%) 1.73 1.36 -7.48 1.96 1.07 -16.49 -0.29 0.01

(2.39) (21.76) (2.23) (13.27)
Coast
DPGR 0.34 0.37 -0.73 0.39 0.35 -0.65 -0.01 0.76

(0.51) (3.75) (0.55) (6.44)
p.a (%) 2.96 2.65 -12.38 3.36 2.65 -9.88 -0.01 0.99

(3.39) (16.87) (2.81) (22.22)
Eastern
DPGR 0.24 0.22 -0.83 0.24 0.33 -0.51 0.11 0.1

(0.31) (2.94) (1.58) (36.16)
p.a (%) 2.14 1.78 -16.08 2.17 2.16 -6.79 0.39 0.03

(2.42) (14.7) (3) (43.55)
North Eastern
DPGR 1.21 1.65 -0.65 1.83 2.52 -0.41 0.87 0.09

(2.36) (14.08) (3.12) (12.05)
p.a (%) 8.26 7.69 -9.85 10.97 10.44 -5.1 2.75 0.07

(7.61) (31.17) (8.26) (29.29)
Nyanza
DPGR 23.4 23.9 8.92 0.29 0.26 -0.36 -23.64 0

(12.57) (247.8) (0.19) (1.86)
p.a (%) 37.64 37.39 25.79 2.59 2.27 -4.38 -35.12 0

(3.49) (73.61) (1.42) (11.08)
Rift Valley
DPGR 0.45 0.47 -0.7 0.48 0.54 -0.58 0.07 0.21

(1.39) (35.04) (0.79) (9.93)
p.a (%) 3.81 3.11 -11.36 4 3.82 -8.38 0.71 0

(3.79) (43.11) (3.35) (27.02)
Western
DPGR 0.3 0.27 -0.45 0.31 0.28 -0.24 0.01 0.41

(0.23) (1.63) (0.14) (0.64)
p.a (%) 2.65 2.27 -5.77 2.72 2.42 -2.66 0.15 0.07

(1.71) (10.17) (1.15) (5.07)
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C.4 Temporal and spatial variation of rainfall

Figure 28: Long-term of yearly rainfall departures

Notes: The Figures represent the time series of yearly rainfall departures ( % above or below
1983-2013 mean) and time series of annual precipitations (mm)
Sources : author’s elaboration on CHIRPS data.

Figure 28 plots the time series of annual precipitation departures aggregated over the
country and interannual rainfall variability. Figure 29 shows the time series of the seasonal
anomalies, compared with the annual departures (in dashed lines), and informs about in-
traseasonal variability. The 1992-1995, 1999-2001, 2005-2006, and 2009-2010 droughts are
all distinct in the four seasons. OND variations are high during the 1983-2013 period,
with rainfall on the order of −50% below the mean ( Figure 29 (d) OND). As expected
from the literature, the short rains seem to play a major role in the interannual variabil-
ity and have the highest correlation with yearly departures over the 1983-2013 period.
However, short rain variations, linked to the ENSO, are stable over the decades (same
rainfall deficit in 1987 as in 2005). Figure 29 (b) displays an increase in dry conditions
during the long-rains since 1999s, in comparison to the previous decade ( two small dry
events of less than −15% deficit over the 1988-1998 decade, while 3 major ones over the
1999-2009 decade, up to −35%). This is in line with the main results of Lyon and DeWitt
[2012], which observed a drastic failure in the long rains after 1999 over East Africa. This
suggests that the decline in precipitation in Kenya since the 1980s is mainly borne by the
fall in the long rains since 1999s (manifested by longer dry spells, more intense and con-
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centrated rains over the long rains, mainly over Eastern Africa, as shown in long-trends
analysis).

Figure 30 plots the spatial pattern of the departures of the rains over the short-rainy
season from October to December (OND). Severe floods over the short-rainy season can
be identified in 1997 and 2006.

Figure 29: Long-term of seasonal rainfall departures

Notes: The Figures represent time series of seasonal rainfall departures ( % above or below
the 1983-2013 mean) compared with the annual departures, and total precipitation for (a)
January-February (JF) (b) March-April-May-June (MAMJ) (c) July-August-September(JAS)
and (d) October-November-December (OND)
Sources : author’s elaboration on CHIRPS data.
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Figure 30: Rainfall percent departures of the short-rainy season (OND) from the 1983-2013 mean
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D Main result

D.1 Climate variability

Table 21 looks at the interaction of the number of droughts with a dummy which equals
1 if the sublocation has been hit by at least one flood over the decade. Independent
variables are computed based on the 10th and 90th percentile of each sublocation rainfall
distribution.

The Table displays the results across sublocation types. First, it shows that the main
result is robust to controlling for flood occurrence. Then, it shows that the out-migration
is higher for sublocations that were not hit by any flood during the period, as the ef-
fect is twice bigger. Under no excessive rains, an additional dry rainy season decreases
the DPGR by 3.97 p.p, which corresponds to a 14% decrease. The effect holds within
agriculture-oriented rural areas, where the DPGR decreases by 3.5 p.p (17% decrease),
and is still higher in rural areas where pastoralism prevails (18.5% decrease). The inter-
action term shows that the effect of an additional drought is significantly attenuated for
sublocations hit by at least one flood by 2.5 p.p. Overall if a sublocation has faced at
least one flood, an additional dry year decreases the DPGR by 1.5 p.p. The occurrence
of flood cancels out the decrease of the DPGR in rural areas with low pastoralism.

This result can have several readings. First, it might reveal that being hit by both
rainfall shortages and excess reduces the financial capacity to migrate for individuals.
Second, it could be that excessive rainfall over the rainy season is less severe than droughts,
a result that is found in the analysis of the spatial and temporal variation of rainfall
(Figure 5). In this sense, the rainfall extremes would be beneficial and would attenuate
the negative effects of droughts on agricultural outcomes for instance. If the results from
Section ?? are more in line with the second interpretation, these results have to be read
carefully. Even if the number of dry years over each period is not correlated with the
number of wet years 44, as suggested in Figure 5, the results might be biased due to
multicollinearity.

44coefficient correlation: 0.0053
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Table 21: Effects of the number of dry and wet rainy season on the DPGR

All Kenya Urban Rural Low Pastoralism High Pastoralism

(1) (2) (3) (4) (5)

Number of dry years -3.997*** -1.527 -4.304*** -3.551** -6.348***
[0.899] [2.684] [0.963] [1.605] [1.550]

Number of wet years >0 1.248 1.195 1.122 -0.854 2.609
[1.206] [3.596] [1.292] [1.617] [2.524]

Number of dry years × Number of wet years >0 2.485** 0.933 2.696** 3.934** 3.041
[1.063] [3.167] [1.126] [1.620] [2.263]

Period FE Yes Yes Yes Yes Yes
Yes
Sublocation FE Yes Yes Yes Yes Yes
Yes

N 5036 756 4280 1626 1800
R2 0.677 0.747 0.661 0.705 0.613
Mean DPGR (%) 27.75 31.55 27.08 20.09 34.15

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North Eastern
provinces are excluded. Each demographic variable is winsorized at the 5% threshold.
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E Heterogeneity

E.1 Gender and age brackets

Table 22 gives the results across gender and sublocation types restricting to the [15;65]
years old cohort. Table 23 gives the results on the whole [0;69] cohort for comparison
purposes.

Table 22: Effects of the number of dry rainy season across gender and location

Sample All Kenya Rural

All Low Pastoralism High Pastoralism

RDPGR Males Females Males Females Males Females Males Females

[15,65] (1) (2) (3) (4) (5) (6) (7) (8)

Nb of dry years -0.455*** -0.423*** -0.579*** -0.521*** -0.328** -0.449*** -0.792*** -0.609***
[0.0989] [0.0928] [0.116] [0.111] [0.165] [0.164] [0.192] [0.184]

Nb dry years × density 0.000106 0.000232* 0.000763*** 0.00113*** 0.000682* 0.000702** 0.00125** 0.00232***
[0.000122] [0.000128] [0.000282] [0.000273] [0.000362] [0.000343] [0.000633] [0.000657]

Period FE Yes Yes Yes Yes Yes Yes Yes Yes
Sublocation FE Yes Yes Yes Yes Yes Yes Yes Yes
N 5036 5036 4280 4280 1626 1626 1800 1800
R2 0.567 0.609 0.542 0.582 0.558 0.589 0.525 0.566
Mean RDGR (%) -2.449 -2.789 -2.601 -2.915 -3.210 -3.550 -1.971 -2.249
Share (%) 16.99

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North Eastern provinces are
excluded. Each demographic variable is winsorized at the 5% threshold.
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Table 23: Effects of the number of dry rainy season on RDPGR

All Kenya Urban Rural Low Pastoralism High Pastoralism

[0,69] (1) (2) (3) (4) (5)

Number of dry years -1.196*** -0.0900 -1.875*** -1.205* -2.278***
[0.382] [1.065] [0.459] [0.669] [0.761]

Number of dry years × density 0.000758 0.0000579 0.00494*** 0.00369*** 0.00895***
[0.000491] [0.000383] [0.00112] [0.00142] [0.00274]

Period FE Yes Yes Yes Yes Yes
Yes
Sublocation FE Yes Yes Yes Yes Yes
Yes

N 5036 756 4280 1626 1800
R2 0.645 0.749 0.607 0.619 0.594
Mean RDPGR (%) -8.640 -1.686 -9.868 -12.93 -6.784

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North
Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.
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E.2 Education

Figure 31 displays the heterogeneity across educational levels per age bracket of the adults.
As schooling attendance has increasing trends in Kenya, it could be possible that the result
on the unskill individuals is driven by older adults. Figure 31 shows that it is not the
case, and the result across the skill distribution is not driven by any age effects.

Figure 31: Effect of the number of dry rainy seasons across educational level and
age brackets

(a) All Kenya (b) Rural areas - Low-Pastoralism

Notes: Figure (a) plots the main result of the number of dry years across age brackets
activity of individuals that never attended school and those who attended at least primary
education. Figure (b) plots the same coefficient, focusing on rural sublocations where
pastoralism is not the main agricultural activity.
Sources: Author’s elaboration on KNBS and CHIRPS data.

E.3 Economic Activity

Figure 32 displays the heterogeneity results according to the economic activity. It breaks
down the results on the Not working individuals. If the results are mainly driven by
the class Other, the Figure shows a significant increase of the unemployed population
within urban areas. The magnitude of the effect on individuals seeking jobs is small as
the unemployed accounts for a small proportion of the population in age of working (only
9%).
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Figure 32: Effect of the number of dry rainy seasons across economic activity and
location 2

(a) All Kenya (b) Rural areas

Notes: Figure (a) plots the main result of the number of dry years across economic activity of
individuals in the age of working in the first year of the decade. Figure (b) plots the same
coefficient, focusing on rural sublocations where pastoralism is the main agricultural activity
and where it is not.
Sources: Author’s elaboration on CHIRPS and KNBS data.

F Robustness

F.1 Binary treatment

Table 24 gives the results of the binary treatment for the DPGR[15,65].

F.2 Common trend assumption

Table 25 shows that the results of both the continuous and binary treatments are robust
when restricting the sample to the 668 sublocations used in the test of parallel trends in
Section 9.2.
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Table 24: Effects of the increase in droughts on the DPGR - Binary treatment

Outcome DPGR [15,65]

All Kenya Urban Rural Low Pastoralism High Pastoralism

(1) (2) (3) (4) (5)

Dummy treatment × Period -1.894** 0.556 -2.225** -1.009 -5.280***
[0.899] [2.698] [0.953] [1.185] [1.989]

Dummy Period -1.585** -2.429 -1.475** -1.810* 0.239
[0.652] [1.730] [0.702] [0.936] [1.235]

Sublocation FE Yes Yes Yes Yes Yes

N 3708 436 3272 1248 1316
R2 0.667 0.701 0.663 0.727 0.606
Size Control Group 1148 133 1015 336 460
Size Treatment Group 706 85 621 288 198

Notes: Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza
and North Eastern provinces are excluded. Each demographic variable is winsorized at the 5% threshold.

Table 25: Effects of the number of dry rainy season on the DPGR - Continuous
and Binary treatment - Restricted Sample

TWFE - Continuous treatment DiD - Binary treatment

All Kenya Rural High Pastoralism All Kenya Rural High Pastoralism

(1) (2) (3) (4) (5) (6)

Number of dry years -2.415** -2.669** -4.153***
[1.084] [1.187] [1.132]

Number of dry years × density 0.0000396 -0.00280 0.0143***
[0.000499] [0.00400] [0.00414]

Dummy treatment × Period -3.484* -4.631** -7.274
[2.084] [2.214] [4.763]

Period 3.518** 4.509*** 6.939**
[1.380] [1.501] [2.781]

Period FE Yes Yes Yes
Sublocation FE Yes Yes Yes Yes Yes Yes

N 1336 1164 1800 1336 1164 466
R2 0.705 0.700 0.613 0.704 0.698 0.611
Mean DPGR (%) 26.30 25.25 34.15 26.30 25.25 33.08

Notes:Standard errors clustered at the sublocation level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North Eastern
provinces are excluded. Each demographic variable is winsorized at the 5% threshold.
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F.3 Spurious correlation

Figure 33: Temporal randomization inference tests - Binary treatment

Notes: This Figure represents the distribution of the treatment effects of the binary treatment
when conducting 1,500 permutations. Each permutation randomly changes the sublocations
allocation to the treatment. As the binary treatment excludes sublocations that have known
close droughts straddling the two censuses, the sample change for each estimation, while the
sample size remains 3708 for each permutation. The vertical line represents the main treatment
effect using my main estimation (Table 7 Column 1) and gives the new estimated p-value.
Sources: Author’s elaboration on CHIRPS and KNBS data.

F.4 Other climate indicators

Figure 34 compares the distribution of the number of sublocations hit by droughts across
years, according to the 10th decile and SPEI definitions. Table 26 displays the effects of
the number of dry and wet years, based on cumulative rains over the short rainy season
OND being under the 10th decile and over the 90th decile. It shows that extreme events
occurring during the short-rainy season have little effect on migration.

The Standardized Precipitation Evaporation Index (SPEI) is a multiscalar index [Vicente-
Serrano et al., 2010], including the role of precipitation, temperature, and potential evap-
otranspiration as it captures anomalies of the water balance. For each sublocation, I build
the SPEI using the CHIRPS and CHIRTS data on the 1983-2013 historical mean 45, which

45The SPEI has been computed using the R library SPEI developed by Vicente-Serrano et al. [2010]
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gives the standard deviations of water balance. SPEI values give the intensity of droughts,
as moderate droughts range from [-1,-2] and severe droughts from [-2,-3], and accordingly
for excessive rainfall. For each MAMJ season, I calculate the number of months under a
drought according to the SPEI values. I define a binary variable by taking the value one
if the rainy season in year y was hit by 2 or 4 months, as calculated by the SPEI, and
then calculate the number of the dry rainy season for each period.

Figure 34: Number of dry and wet sublocations across indicators

(a) Number of dry years -10th decile (b) Number of dry years - SPEI 4
months

Notes: Figures plot in red the number of sublocations for which the rainy season is dry across
year. Accordingly, it plots in blue the number of sublocations for which the rainy season is
wet. Figure (a) plots it based on the main independent variable of this paper, relying on the
cumulative rains being below the 10th decile. Figure (b) defines a dry year if the entire rainy
season is under droughts according to the SPEI definition.
Sources: Author’s elaboration on CHIRPS data .
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Table 26: Effects of the number of dry short-rainy season (OND) on the DPGR

All Kenya Rural areas

(1) (2) (3) (4)

Number of dry years -0.222 0.313
[0.778] [0.815]

Number of wet years -0.253 -0.442
[0.755] [0.850]

Period FE Yes Yes Yes Yes
Sublocation FE Yes Yes Yes Yes

N 5036 5036 4280 4280
R2 0.673 0.673 0.657 0.657
Mean DPGR (%) 27.75 27.75 27.08 27.08

Notes: Standard errors clustered at the sublocation level,
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Nyanza and North East-
ern provinces are excluded. Each demographic variable is
winsorized at the 5% threshold.

91



G Bilateral Migration at the District Level

In this section, I propose an analysis at the district level, looking at the effect of droughts
on yearly bilateral migration between districts, from 1991 to 2007. This empirical fails
at finding significant effects of droughts on bilateral migration at the district level, which
shows the comparative advantage of this paper to look at the sublocation level in order
to capture small-magnitude effects.

G.1 Data

In the censuses, relevant and precise information about individual movements is only
available at the district levels. Each individual is asked about his district of birth and
previous residence, which corresponds to the district in which the individual was in August
the year before the administrative censuses (1988, 1998, and 2008). The main advantage
and uniqueness of the more recent censuses (1999 and 2009) is a retrospective question
that allows building a panel at the district level. In both censuses is asked the duration
of residence of each individual, indicates the date at which an individual moved to the
current district "When did <NAME> move to the current district ?.

This specification of the 1999 and 2009 censuses enables to build of a retrospective
panel of migration for each district and contributes to the micro-oriented literature which
usually has limited years of analysis because uses the question of the place of residence
the year preceding the census (1998 and 2008 - the answer to the question Where was
<NAME> living in August 1998/2008 ? ), such as Dallmann and Millock [2017], using
two censuses and thus two-time points. The main caveat about the variable of outmigra-
tion from each district is the fact that we assume that the district of birth and the origin
districts are the same.

G.2 Empirical analysis

I estimate the effects of yearly droughts on migration behaviors for all 41 districts of
Kenya, over the 1991-2007 period, using both the 1999 and 2009 censuses. A panel of
bilateral migration is built over 14 years (1991-1997 and 2001-2007, as year t and t-1 of
censuses are excluded) using retrospective questions about the year of arrival into the
district, and the year/place of birth. I take as the district of origin the place of birth for
each individual, which equals the district left in the year t as the place of birth, and thus
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neglect stages of migration. The in-migration is exact, as I have the year of the arrival of
each individual leaving in district d in August 1999 and 2009 46. The population staying
in the district d at the year t is calculated from the population leaving in district d at the
time of the census, such as

popd,t = popd,t=99 or t=09 − entrypost(t) − birthpost(t) + exitpost(t)

Where entrypost(t) is the number of individuals living in district d at the time of the
census, but that arrived in this district after t, exitpost(t) the number of individuals not
leaving in this district at the time of the census but that left this district (proxied by the
district of birth) after the year t. Finally, birthpost(t) is the number of individuals living
in the district d at the time of the census but born after the year t. For each district, we
miss individuals who died during the year t and the time of the census.

I estimate a gravity equation on bilateral migration rates, controlling for existing mi-
gration determinants both in origin and destination districts. I use a Poisson Pseudo
Maximum Likelihood (PPML) regression to account for the high proportion of zero flows.
The model estimates the effect of short-term droughts occurring during the rainy season
on inter-district migration. More formally, the empirical strategy can be written as follows:

Mod,t =
mod,t

popoo,t
= α0 + α1Do,t + γo + δd,t + βod + ϵod,t (3)

Where Mod,t measures migration rates from the district of origin to the district of
destination d. γo,δd,t and βod are origin, destination × year fixed effects, taking into
account time-varying characteristics of the destination of migration. Characteristics of
the migration pair such as the distance traveled, the presence of a common border, are
captured by bilateral fixed effect, βod. Di,t is the dummy for the dry shock, which indicates
whether the rainy season of the year t is considered as dry or not.

46As the censuses have a more detailed question, which is the place of residence the year preceding the
census (so 1998 and 2008 - the answer to the question Where was <NAME> living in August 1998/2008
? ), I do not take these two years into account, to avoid bias of better self-reporting (I indeed observe a
peak of migration during these years)
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G.3 Results

Table 27 compares an OLS to a PPML estimator of equation 3. Columns (1) and (2)
present the OLS estimators, and Columns (3) and (4) the PPML ones. A caveat of the
use of OLS estimator for bilateral migration is the pairs of districts with no migration for
a given year, which is corrected in PPML estimations. Columns (2) and (3) restrict the
analysis by excluding the observations with zero bilateral migration flows. All estimations
fail to find a significant effect of yearly droughts on inter-district migration. However, all
estimators are positive, and can, be read as being hit by a drought increases by 8% the
migration rates in the bilateral flows.

Table 27: Effect of yearly droughts on bilateral migration at the district level

OLS PPML
ln(Mod,t) ln(Mod,t + 1) Mod,t Mod,t > 0

(1) (2) (3) (4)

Dry year 0.00145 0.000308 0.0789 0.0826
[0.00185] [0.00410] [0.133] [0.133]

Origin district FE Yes Yes Yes Yes
Destination-time FE Yes Yes Yes Yes
Origine-destination FE Yes Yes Yes Yes
Zero migration rates excluded No Yes No Yes

N 23534 18312 23520 18312

Notes: Standard errors clustered at the origin district level, ∗p < 0.1,∗∗ p <
0.05,∗∗∗ p < 0.01.
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